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Abstract

Two relevant models of strongly correlated systems are studied with many-body
schemes, in particular the Lanczos diagonalization method. The first one concerns
individual carbon clusters and is motivated by recent reports stating that some of these
clusters may show ferromagnetic characteristics. To study the magnetic properties of
ten-atom clusters we apply an extended Hubbard model approach, which we think is
more realistic. We show that the nearest neighbor interaction V “destroys” the ferro-
magnetic solutions in most cases. However for the so-called “iso-g,” “iso-h” and “iso-i”
isomers it has no negative effect, or even shows an enhancement of the ferromagnetic
state. In the second part of this thesis we study the electron-phonon interaction in
a one-dimensional chain of copper and oxygen atoms by modelling it with a three-
band model with phonons Hilbert space truncation. This is motivated by recent studies
showing a strong interplay between electron-phonon interaction and strong electronic
correlations in high-Tc cuprates. We show that buckling phonons lead to a charge
transfer from oxygen to copper sites inducing an enhancement of antiferromagnetic
spin correlations, whereas for breathing phonons we mostly obtain opposite effects. In
conclusion the (pair) binding energies of the two phonon modes are compared. The
comparison suggests that buckling phonons might prevent pair binding while breathing
phonons induce an enhancement.
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Zusammenfassung

Zwei aktuelle Modelle stark korrelierter Systeme werden mit Hilfe der Viel-Teilchen-
Theorie untersucht, insbesondere der Lanczos-Diagonalisierungsmethode. Das Erstere
betrifft einzelne Kohlenstoffcluster und ist veranlasst durch jüngste Forschungsergebnis-
se, welche darauf schließen lassen, dass einige dieser Cluster ferromagnetische Eigen-
schaften aufweisen. Um die magnetischen Eigenschaften von zehnatomigen Clustern zu
untersuchen, wenden wir das erweiterte Hubbard-Modell an, was nach unseren Über-
legungen realistischer erscheint. Wir belegen, dass die zwischen benachbarten Atomen
vermittelte Wechselwirkung V in den meisten Fällen die ferromagnetischen Lösungen
“zerstört.” Allerdings verursacht sie bei den so genannten “iso-g,” “iso-h” und “iso-i” Iso-
meren keine negativen Effekte, bzw. führt sogar zu einer Verstärkung des ferromagne-
tischen Zustands. Im zweiten Teil dieser Arbeit untersuchen wir die Elektron-Phonon-
Wechselwirkung in einer eindimensionalen Kette bestehend aus Kupfer- und Sauerstoff-
atomen indem wir das System mit einem Drei-Bänder-Modell mit phononischer Hilber-
traumlimitierung modellieren. Dies ist motiviert durch jüngste Forschungsergebnisse,
welche ein starkes Zusammenspiel von Elektron-Phonon-Wechselwirkungen mit star-
ken Elektronenkorrelationen in Kuprat-Hochtemperatursupraleitern belegen. Wir zei-
gen, dass longitudinale (“buckling”) Phononen zu einem Ladungstransfer von Sauerstoff-
zu Kupferatomen hin führen und gleichzeitig eine Verstärkung der antiferromagnetischen
Spinkorrelationen induzieren, wohingegen axiale (“breathing”) Phononen im Grunde
gegensätzliche Effekte bewirken. Abschließend werden die (Paar-)Bindungsenergien
beider Phononenmoden miteinander verglichen. Der Vergleich suggeriert, dass longi-
tudinale (“buckling”) Phononen Paarbildung verhindern während axiale (“breathing”)
Phononen diese begünstigen.
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Chapter 1

Introduction

The theoretical description of many-body systems is still one of the most unexplored and in
many spheres controversial fields of physics. Since the development of powerful computers
and especially in the last decades this field has gained enormous interest, which is docu-
mented by a huge number of scientific publications. Computer science, on the other hand,
has evolved into a “third way” of making science being a reasonable alternative to “bare”
theory and experimental physics. After the discovery of “new” condensed matter properties
such as heavy fermions and high-temperature superconductors, strongly-correlated systems
have also gained much interest leading to a drastic development of new numerical methods
and theoretical explanatory attempts.

In the present work we study two relevant examples of strongly correlated systems. In
the first part we investigate magnetic properties of individual carbon clusters with ten atoms.
This is motivated by recent reports stating that these materials may exhibit magnetic prop-
erties. In the second part we study the electron-phonon interaction in a one-dimensional
chain of copper and oxygen atoms by means of novel approaches to correlated systems. The
latter case is motivated by recent theory work on high-Tc superconductivity for studying
distinctive properties of such materials. [1–5]

The thesis is organized as follows: First (Chapters 2 and 3), we introduce the main
physical background as well as numerical methods, in the first place the Lanczos diagonal-
ization method, by which we treat our problems of interest. We begin our calculations by
studying a simplified 1D problem (Chapter 4) which we can compare with known results.
In the following, the magnetic properties of individual carbon clusters (Chapter 5) and the
electron-phonon interaction in a 1D Cu-O-chain (Chapter 6) are studied. The results are
discussed at the end of each chapter as well as in the summary (Chapter 7). Finally, in the
appendix, we present some additional material which we considered important. All used
references are listed at the end of the thesis.

1



Chapter 1. Introduction
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Chapter 2

Physical Background

2.1 Introduction to Many-Body Physics

The underlying chapter mainly follows the approaches to many-body physics given in [6–8],
whereas detailed source references are given at the respective positions.

The interest in many-body systems and their evaluation mainly emerges because of two
simple reasons. On the one hand, in real life we mostly deal with matter of macroscopic
dimensions, and on the other hand correlation effects within a many-body system lead to
completely new physical properties that we want to examine. Since many-body systems
are composed of single quantum-mechanical particles, it is obvious to choose a quantum-
mechanical approach when evaluating these systems. In the following we deal with solids
which represent good examples for many-body systems. On contrary to free particles a solid
can be seen as a system consisting of an interacting electron gas moving in a (approximately
static) charge compensating background. For crystalline solids we can assume that this
background has a perfectly periodic arrangement which is crucial for a theoretical (and
computational) evaluation.

In a more detailed consideration we can describe each atom out of a solid consisting of
three parts: the nucleus, the core electrons and the valence electrons. Further we refer to
the nucleus with its tightly bound core electrons as ion. Thus a solid can be seen as an
interacting system of particles consisting of lattice ions and valence electrons [see 6, p. 37].
In our discussion so far this classification is the first approximation we make because the
distinction between core and valence electrons is not always unique. In particular it also
depends on the chemical bond and element.

With this approximation and our preceding discussion we are finally able to formulate the

3



Chapter 2. Physical Background

ab initio Hamiltonian for a solid consisting of five terms which are described subsequently:

Ĥ =
Nel∑
i=1

p̂2
i

2m︸ ︷︷ ︸
(i)

+
Nion∑
k=1

P̂2
k

2Mk︸ ︷︷ ︸
(ii)

+
∑
i<j
Vel−el (̂rj − r̂i)︸ ︷︷ ︸

(iii)

+
∑
k<l

Vion−ion(R̂l − R̂k )︸ ︷︷ ︸
(iv)

+

+
∑
i,k
Vel−ion (̂ri − R̂k )︸ ︷︷ ︸

(v)

. (2.1)

Term (i): kinetic energy of the electrons
Nel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of valence electrons
p̂i . . . . . . . . . . . . . . . . . . . . . . . . . . . momentum operator for electrons
m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . electron mass

Term (ii): kinetic energy of the ions
Nion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of ions
P̂k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . momentum operator for ions
Mk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ion masses

Term (iii): interaction term for electrons among each other
Vel−el . . . . . . . . . . . . . . . interaction energy between two electrons
r̂i, r̂j . . . . . . . . . . . . . . . . . . position vectors (operators) of electrons

Term (iv): interaction term for ions among each other
Vion−ion . . . . . . . . . . . . . . . . . . interaction energy between two ions
R̂k , R̂l . . . . . . . . . . . . . . . . . . . . . position vectors (operators) of ions

Term (v): interaction term for ions and valence electrons
Ve,K . . . . . . . . . interaction energy between nuclei and electrons

The main aim of many-body quantum mechanics is to evaluate the Schrödinger equa-
tion corresponding to the Hamiltonian written above. However, for the most part we are
interested in the solution of the static Schrödinger equation, i. e. the quantum-mechanical
eigenvalue problem

Ĥ|xi〉 = εi|xi〉, (2.2)

where |xi〉 denote the eigenstates (eigenvectors) with the eigenvalues (energies) εi.

4



2.2. Mathematical Apparatus

The most obvious approach in this matter is to make several simplifications (starting
with the Born-Oppenheimer approximation) of the Hamiltonian in Eq. (2.1) and adapt them
to the mathematical problem of interest. Such considerations lead us e. g. to the Jellium
model and are very useful for band structure calculations and the so-called mean-field
theories (like the Local density approximation). Generally speaking, we can conclude that
for weakly correlated systems this is a very good way to gain reasonable results.

However, in strongly correlated systems the interaction between electrons plays the
most essential role and is responsible for a variety of physical effects. It is therefore obvious
to resort to somewhat different models and approaches that take the electron-electron inter-
action explicitly into account. In the following we will first introduce the second quantization
which is a very useful formalism for describing many-body systems and Hamiltonians. After
that we will have a more closer look at the individual terms from Eq. (2.1) where we can
apply the formalism of second quantization. In relation to these we will formulate (common)
model Hamiltonians, used in the latter numerical treatment, as well as physical quantities
being the main scope of all calculations.

2.2 Mathematical Apparatus

So far we have only introduced the ab initio Hamiltonian for solids together with the initial
eigenvalue problem where the latter marks the beginning point for our further calculations.
In the following we will describe the basic techniques of these calculations together with
special aspects of quantum theory which have to be considered when treating many-body
systems.

For (single-particle) quantum theory [see 9, p. 89-126] we already know that any state of
a physical system is defined by a state vector |ψ〉 (ket) in the Hilbert space. All measurable
physical quantities are described by Hermitian operators, called observables1 that act on
the same space. As parallel state vectors describe the same state, we mainly deal with
normalized state vectors. All Hermitian operators have a defined number of eigenstates
which are invariant by the action of the operator (except a scalar factor, the eigenvalue).
Furthermore the set of all eigenvectors forms a complete basis of the Hilbert space and we
can expand any state (vector) as a linear combination of these basis states by

|ψ〉 =
∑
i
ci|xi〉,

where |xi〉 are the eigenvectors with expansion coefficients ci.
The eigenvalue εi, corresponding to an arbitrary observable (e. g. Ĥ) and one of its

eigenstates |xi〉, is the only possible result we can get when measuring a physical quantity.
The probability P(εi) of obtaining the (non-degenerate) eigenvalue εi when measuring the

1In the present work all observables are marked with a hat accent “ ˆ ” to distinguish them from other
variables.

5



Chapter 2. Physical Background

physical quantity Ĥ of a system described by the normalized state |ψ〉 is:

P(εi) = |〈xi|ψ〉|2 = |ci|2. (2.3)

The expansion to degenerated and continuous eigenvalues can be done in an analogue way.
For further reading we refer to [9, p. 191-195].

The notation we used above is the so called Dirac notation for the first quantization and
is a very useful formalism for the whole (single-particle) quantum theory. One of its main
advantages is the fact that any state vector |ψ〉 can be described in an arbitrary chosen
basis. Often we consider the so called position basis, representing a state (e. g. describing
one particle without spin) in the three-dimensional real space:

ψ(r) := 〈r|ψ〉. (2.4)

In such a case ψ(r) from Eq. (2.4) is called wave function (corresponding to the state |ψ〉),
which represents a complex-valued function in C3. Without going into further details we
can state that the wave function marks the basic concept of quantum theory, as it contains
all the information possible to obtain from a quantum-mechanical particle like an electron.
It can also be interpreted as a probability amplitude of the particle’s presence [see 9, p. 11]
which makes it the most important quantity for the characterization of a quantum-mechanical
state.

For our further discussion it is therefore important to derive a useful formalism for
describing a many-body system by considering all principles written above. The most
obvious approach in this matter is the expansion of the one-particle wave function to a
N-particle wave function by

ψ(r) −→ ψ(r1, r2, . . . , rN ), (2.5)

which is now a complex-valued function in C3N . The above form suggests that one can con-
struct the many-body wave function from individual single-particle wave functions which
we will not treat in particular. At this point we want to note that most physical text-
books dealing with many-body theory widely treat this ansatz in their introducing chapters
[see, e. g. 6, 7, 10]. Although this is not crucial for numerical calculations it represents a good
didactic way for demonstrating the analogy between the one-particle and the many-particle
quantum mechanics. Therefore we will skip explicit derivations based on Eq. (2.5), but de-
scribe the main ideas like the indistinguishability of quantum-mechanical particles which
lead us directly to the second quantization formalism.

2.2.1 Identical Particles

In the transition from classical mechanics to quantum mechanics one of the most fundamen-
tal principles denotes that identical particles are indistinguishable. In classical mechanics
each particle can be described by its mass and trajectory in the six-dimensional phase
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2.2. Mathematical Apparatus

space (i. e. by its position and impulse). Thus classical identical particles (e. g. same mass,
charge, etc.) are always distinguishable at least by their phase space trajectory. However,
we have learned from before that in quantum mechanics particles are described by their
corresponding wave functions. Once brought together, their individual wave functions over-
lap, and subsequently we lose all information belonging to a certain particle. So to speak,
we cannot distinguish the individual particles any more.

The most important consequence of this fact is that all measurable quantities within
a many-body system are invariant under an exchange of particles.2 Mathematically this
implies that the expectation values of observables and thereby the scalar products of states
remain the same if the particles quantum numbers are exchanged. However, the principle
of indistinguishability by itself does not give an a priori mathematical description for the
explicit states and operators. In order to derive the main mathematical properties following
from the above statements, it is useful to introduce the so-called Transposition operator P̂ij
by

Definition 2.1 The Transposition operator P̂ij is defined by acting on a particular state |ψ〉
and exchanging the quantum numbers ri and rj corresponding to the particles i and j :

P̂ijψ(r1, . . . , ri, . . . , rj , . . . , rN ) = ψ(r1, . . . , rj , . . . , ri, . . . , rN ). (2.6)

Without loss of generality the state |ψ〉 in Eq. (2.6) is chosen to be represented in the position
space. However the same operation can be described in any other state representation.

It is now clear that we return to the same result when applying the Transposition operator
twice:

P̂2
ijψ(r1, . . . , ri, . . . , rj , . . . , rN ) = ψ(r1, . . . , ri, . . . , rj , . . . , rN ). (2.7)

It follows that

P̂2
ij = 1 =⇒ P̂ij = P̂−1

ij ,

and a trivial further derivation can show that P̂ij is an unitary and Hermitian operator. On
the other hand, Eq. (2.7) can also be interpreted as the eigenvalue equation for P̂2

ij with its
eigenvalue λ = 1. Thus we can state that P̂ij has two possible eigenvalues (±1) which do
not depend on the particular state |ψ〉 and particle pair (i, j). Although we still have not
introduced an explicit way for representing basis states of a many-body system (see next
section), we are already able to summarize the most important mathematical properties.

In a system consisting of identical particles the exchange of two particles is not de-
tectable in any way. The quantum-mechanical state (function) after an exchange is either

2More precisely: under an exchange of the particles quantum numbers.
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Chapter 2. Physical Background

symmetric or antisymmetric, and we can define two kinds of quantum-mechanical particles
by the following:

P̂ijψ(r1, . . . , ri, . . . , rj , . . . , rN) =
{

+ψ(r1, . . . , ri, . . . , rj , . . . , rN ) bosons
−ψ(r1, . . . , ri, . . . , rj , . . . , rN ) fermions.

(2.8)

The antisymmetry of fermionic wave functions is equivalent to “Pauli’s exclusion principle”
which states that two identical fermions cannot occupy the same quantum-mechanical state
simultaneously. It is worth mentioning that this principle is responsible for the characteristic
composition of the periodic table of the chemical elements. Further properties, however, are
treated in relativistic quantum field theory (QFT), which is beyond the scope of this work.

2.2.2 Second Quantization

We are now able to introduce a very useful mathematical formalism for many-body systems,
often referred to as second quantization or occupation number representation. It represents
a very convenient way for describing basis states and observables, especially in the later
numerical treatment. However, it only describes a mathematical reformulation of the initial
eigenvalue problem [introduced in Eq. (2.2)] and gives no indication for a solving approach.

The basic idea behind the second quantization is a basis transformation to a special
Hilbert space, called Fock space. Although not shown in detail, we have already stated that
it is possible to construct an arbitrary many-body basis out of one-particle basis states. On
the other hand we can skip this part and immediately conclude that any arbitrary system of
identical particles has a particular (or even infinite) number of orbitals. So we can construct
a many-body basis in the way that we arrange all orbitals in a particular order and assign
a number to each of them. Thus we only have to specify how many particles occupy a
certain orbital and we can express an arbitrary basis state vector (ket) by

|k〉 = |n1, n2, n3, . . .〉 with
∑
i
ni = N, (2.9)

where each ni describes the number of particles occupying orbital i with N being the
overall number of particles in the system. Thus the state |k〉 stands only for one particular
combination of occupation numbers ni.

Originally introduced by Vladimir Aleksandrovich Fock [see 11], the Fock space in the
above context is spanned by all possible combinations of ni with a finite number of particles
up to N . In his work, Fock not only made clear the connection between single-particle
Hilbert spaces and the many-body configuration space, but he also showed that the repre-
sentation in Eq. (2.9) is unique if we specify the particle statistics we refer to (i. e. bosonic
or fermionic statistics).

Following above way of basis representation we are already able to stress some basic
principles. As we know from before, a quantum-mechanical state gets changed by the action
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2.2. Mathematical Apparatus

of an operator, e. g. the Hamiltonian. Hence it is clear that in terms of second quantization
this means nothing more than a change of the occupation number’s configuration. For
the first step it is therefore obvious to introduce some kind of fundamental operators for
changing (i. e. increasing or decreasing) the occupation number of a certain orbital. Thus
it is possible to show that any general operator can be expressed by a sum of products of
these fundamental operators.

In the following we will introduce these kinds of operators, called creation and annihi-
lation operators, whereas right from the start we will treat the case for bosons and fermions
separately.

Bosons

According to the spin-statistics theorem which depicts the difference between bosons and
fermions and its theoretical explanation bosons are quantum-mechanical particles (either
elementary or composite) with integer spin described by symmetric wave functions. Further,
bosons are able to occupy arbitrary quantum-mechanical states in an arbitrary amount. We
define bosonic creation and annihilation operators by their action on a state

b̂†i | . . . , ni, . . .〉= B+(ni) | . . . , ni + 1, . . .〉

b̂i | . . . , ni, . . .〉= B−(ni) | . . . , ni − 1, . . .〉

where the b̂†i , b̂i are called creation and annihilation operators respectively, while B±
represents a normalization constant. For the occupation numbers ni, any non-negative
integer is possible:

ni = 0, 1, 2, . . . ,∞.

A trivial derivation shows that b̂†i and b̂i behave like adjoint operators and we define that

b̂i | . . . , ni = 0, . . .〉 := 0

since the occupation number of an “empty” orbital cannot be lowered further. From this
definition it follows that b̂†i and b̂i don’t commute. By this fact and by taking the symmetry
of bosonic wave functions into account we can define the fundamental commutation relations
for bosonic operators:[

b̂†i , b̂
†
j

]
= 0

[
b̂i, b̂j

]
= 0

[
b̂i, b̂†j

]
= δi,j (2.10)

After having defined these relations we are able to determine the normalization constant B±
as well as all other relations that are important for our further calculations. We will
omit any explicit derivations but summarize the most important results in the following.
A very good overview with all calculation steps can be found in [7, p. 10].
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Chapter 2. Physical Background

We define a new operator, called occupation number operator, by

n̂i := b̂†i b̂i

and it can be shown that the action of this operator yields the occupation number ni for
orbital i:

n̂i | . . . , ni, . . .〉 = ni | . . . , ni, . . .〉

Concerning the creation and annihilation operators from before we get

b̂†i | . . . , ni, . . .〉=
√
ni + 1 | . . . , ni + 1, . . .〉

b̂i | . . . , ni, . . .〉=
√ni | . . . , ni − 1, . . .〉

and we are finally able to write down the expression for a general bosonic basis state with
N being the total number of available orbitals:

|k〉 = |n1, . . . , ni, . . . , nN〉 =
N∏
i=1

(
b̂†i
)ni

√
ni!
|0〉 (2.11)

Fermions

Basically for fermions we can proceed in an analogue way by defining fundamental oper-
ators. However, we must somehow include the asymmetry for fermionic wave functions as
well as Pauli’s exclusion principle, stating that two identical fermions cannot occupy the
same orbital. The latter one effects the possible values for the occupation numbers ni, so
we can write that

ni = 0, 1. (2.12)

Further on we define fermionic creation and annihilation operators naming them ĉ†i and ĉi
which is very common in popular textbooks:

ĉ†i | . . . , ni, . . .〉= C+(ni) | . . . , ni + 1, . . .〉

ĉi | . . . , ni, . . .〉= C−(ni) | . . . , ni − 1, . . .〉.

Following all statements outlined above, we have to introduce two more definitions:

ĉ†i | . . . , ni = 1, . . .〉 := 0 ĉi | . . . , ni = 0, . . .〉 := 0.

Finally we can take into account the antisymmetry for fermionic wave functions by consid-
ering a strict order of orbitals. We already know from Eq. (2.8) that

| . . . , ni = 1, . . . , nj = 1, . . .〉 = −| . . . , nj = 1, . . . , ni = 1, . . .〉,
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2.2. Mathematical Apparatus

which makes it clear that the wave function’s sign changes if we exchange two particles,
i. e. if we change their order. However, from a mathematical point of view the ordering of
orbitals is equivalent to the ordering of particles. This, on the other hand, can be expressed
by choosing appropriate commutation relations for the fermionic fundamental operators. We
define these relations like before whereas the only difference to bosonic operators is the
sign change. Therefore we now use anticommutators (denoted by curly brackets)

{
ĉ†i , ĉ

†
j

}
= 0

{
ĉi, ĉj

}
= 0

{
ĉi, ĉ†j

}
= δi,j (2.13)

and also define a fermionic occupation number operator that is identical to the bosonic one

n̂i | . . . , ni, . . .〉 := ĉ†i ĉi | . . . , ni, . . .〉 = ni | . . . , ni, . . .〉.

Before writing down the expression for a general fermionic basis state we have to discuss one
more aspect of the spin-statistics theorem. We have already mentioned that fermions obey
Pauli’s exclusion principle and thus they are particles with half-integer spin. However, two
fermions can occupy the same quantum-mechanical “energy level,” but in such a case they
have different spin eigenvalues σ (with σ = ±1). For this reason it is convenient to define
the orbitals i related just to the quantum-mechanical energy level (which mathematically
corresponds to the spatial wave function) and distinguish two kinds of particles occupying
the same orbital, namely with spin up (σ = +1) and spin down (σ = −1).3 This procedure
represents only a formal change and is used within the whole single-particle quantum
mechanics by splitting particles wave functions into spatial and spin parts. Finally we can
write a general fermion basis state by:

|k〉σ = |n1σ , . . . , niσ , . . . , nNσ 〉 =
N∏
i=1

1∏
σ=−1

(
ĉ†i,σ
)ni,σ |0〉 (2.14)

where all other variables have the same meaning like in the bosonic case.

2.2.3 Operators in Second Quantization

In the following we want to discuss how to express observables in terms of second quan-
tization. For doing this in a common way it is important to take a precise look on the
mathematical connection between first and second quantization. However, so far we have
introduced the second quantization just by applying basic thinking and omitting explicit
mathematical derivations. We will now proceed in the same way by outlining the rough
calculation scheme and summarizing the most important results. It is the aim of this section
to provide a general understanding for observables in terms of second quantization so that
we can resort to this knowledge in the subsequent chapters.

3Later on we will also use “↑” for marking spin up and “↓” for marking spin down particles.

11



Chapter 2. Physical Background

We now follow the approach in [10, p. 14-20] by first considering single-particle operators
for many-body systems. The name is somehow confusing since we mean operators which
act on a N-particle state, but can be written as a sum of operators, each acting on a
single-particle state. We can expand such an operator by

T̂ = T̂1 + T̂2 + . . .+ T̂N ≡
N∑
α=1

T̂α . (2.15)

Subsequently we take a particular T̂α and express its matrix elements in a single-particle
basis [see also 9, p. 108-111] by

Tij = 〈i|T̂ |j〉,

where the |i〉 and |j〉 are the single-particle basis kets. Thus we are able to rewrite this
particular one-particle operator to

T̂α =
∑
i,j
Tij |i〉(α) (α)〈j|

which can finally be used to obtain the expression for the N-particle operator in Eq. (2.15):

T̂ =
∑
i,j
Tij

N∑
α=1
|i〉(α) (α)〈j|.

In the next step one has to apply this operator on a many-body state whereas the case for
bosons and fermions again must be treated separately. However, for both particle types the
results are the same, and after a few calculation steps it follows that

N∑
α=1
|i〉(α) (α)〈j| = â†i âj

where â†i , âj either represent bosonic or fermionic creation and annihilation operators. With
this relation we finally obtain the expression for a single-particle operator in terms of second
quantization by

T̂ =
∑
i,j
Tij â†i âj . (2.16)

The result above means that we can express any single-particle operator by fundamental
creation and annihilation operators as well as a constant factor, namely the matrix element
from the single-particle basis.

The expression for a two-particle operator is derived in the same way. Analogue to
Eq. (2.15) such an operator expands to

F̂ = 1
2
∑
α 6=β

F (2) (̂rα , r̂β),
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2.3. Lattice Electrons

where r̂α and r̂β represent the position vectors (operators) for particles α and β respectively.
The function F (2) (̂rα , r̂β) mediates the interaction between the particles α and β. Factor 1

2 is
needed for the simple reason that an interaction can only occur once and that the particles
are identical as discussed before. Therefore F (2) (̂rα , r̂β) is equal to F (2) (̂rβ, r̂α ), and one can
show that F̂ can finally be expressed by

F̂ =
∑
i,j,k,l

Fi,j,k,l â†i â
†
j âk âl (2.17)

where Fi,j,k,l describes a scalar factor. The derivation of this factor would require a more
thorough treatment of the whole problem as described very detailed in [6, p. 9-28] and
[12, p. 21-27]. For our purposes, however, it is enough to adapt the expression without
explicit proof and therefore write

Fi,j,k,l =
∫

drα
∫
drβ ψ∗i (rα )ψ∗j (rβ) F (2) (rα , rβ)ψk (rα )ψl(rβ) (2.18)

where the ψ(rα ) and ψ(rβ) (with indices i, j, k, l) represent single-particle basis state func-
tions belonging to particle α and β, respectively.

In this section we have treated one- and two-particle operators in a very general way,
and we showed (without proof) that both kinds in terms of second quantization may be
expressed as sums of products of creation and annihilation operators (for the bosonic as
well as for the fermionic case). It shall also be mentioned that same formalism can be
expanded on operators that act on groups of more than two particles. These, however, are
hardly of practical relevance, and as a general rule all observables consist of one- and/or
two-particle terms.

2.3 Lattice Electrons

With the knowledge we have acquired so far we are able to stick to a more detailed treatment
of Eq. (2.1). We commence by considering only electronic terms and focus on the properties
of periodic crystal structures and their consequences for lattice electrons. Subsequently we
introduce following simplifications:

(1) We neglect the ions kinetic terms [Term (ii) in Eq. (2.1)] and assign them to rigid lattice
positions.

(2) The ions interaction [Term (iv)] as well as their interaction with electrons [Term (v)] are
time-independent and form a strictly periodic lattice potential V̂ (̂ri).

(3) We neglect the electrons interactions described by Term (iii).

Simplification (1) reflects the Born-Oppenheimer approximation and follows from the fact
that the mass difference of electrons and nuclei is very large (around the factor 2000).
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Chapter 2. Physical Background

Assuming this we instantly get simplification (2) by which the whole problem reduces to an
“electron sea” interacting with a periodic lattice potential, i. e. the electrical potential that
keeps the ions on equilibrium distances from each other. On the other hand, both principles
apply very closely on systems at low temperatures around 0 K, namely the ground state
and first excited states.

However, the approximation of a non-interacting electron gas in (3) is not obvious any
more and neither justified by experimental knowledge nor any gedanken experiments. It
just describes the most simple way for treating a many-body system and actually serves as
a counterargument indicating that more complex mathematical considerations of electron-
electron interactions are necessary. Since different methods for treating these interactions
exist [e. g. Hartree-Fock or DFT (density functional theory)] we will skip all of these ab initio
techniques and explain this interaction term in detail later on when introducing Hamiltonians
used in our latter calculations (see Sec. 2.6).

By taking account of simplifications (1)-(3), the Hamiltonian from Eq. (2.1) transforms to

Ĥ = Ĥel,kin + Ĥel−ion =
Nel∑
i=1

[
p̂2
i

2m + V̂ (̂ri)
]

(2.19)

while the previously mentioned lattice potential reads as

V̂ (̂ri) =
Nion∑
k=1

Vel−ion (̂ri − R̂k ).

Since the above Hamiltonian is formed by the sum of one-particle operators, we can treat
each particle separately. At the same time the periodicity of the lattice potential (in the
real space) can be expressed by

V (ri) = V (ri + Rn) with Rn =
3∑
α=1

nαaα ,

where the Rn represent arbitrary ions positions of a Bravais lattice with lattice vectors ai
and integer numbers ni. With this relation and the Hamiltonian from Eq. (2.19) the static
Schrödinger equation is obtained by making use of

Theorem 2.1 (Bloch’s theorem) Let V (r) be a periodic potential with periodicity Rn. Then
the solution of the static Schrödinger equation is given by

ψk(r) = eikr · uk(r),

where uk(r) is a periodic function with periodicity Rn and k being a wave vector of the first
Brillouin zone (FBZ). The function ψk(r) is called Bloch function.

14



2.3. Lattice Electrons

Accordingly, Bloch’s theorem states that the periodicity of the lattice potential carries over
to the periodicity of the function uk(r) and thus implies the periodicity of the electron’s
wave function ψk(r). The number of all Bloch functions within the first Brillouin zone (cor-
responding to different k) together with its eigenvalues ε(k) (called Bloch energies) forms
a complete basis set in the reciprocal lattice. It is therefore convenient to turn to a “new”
basis state representation in the reciprocal lattice by introducing so-called Bloch states
and numbering all k-vectors in FBZ by introducing index i. We do this by following the
formalism of second quantization and adopting previously introduced distinction in spin ↑
and ↓ electrons. Starting from the one-particle basis representation, a Bloch state |i〉σ is
defined by

|i〉σ := |kiσ〉,

while σ again denotes the spin eigenvalues (±1). With use of Eq. (2.16) from Sec. 2.2.3 we
are able to express the Hamiltonian in second quantization form:

Ĥ =
∑
i,j,σ
〈kiσ |Ĥ|kjσ〉 ĉ†ki,σ ĉkj ,σ , (2.20)

while the sums are performed over all ki-vectors from FBZ. In this notation the fundamental
operators from above create and annihilate so-called Bloch electrons with particular spin σ
and wave vector ki. Since Bloch states by definition are eigenstates of above Hamiltonian
we finally obtain:

Ĥ =
∑
i,σ
ε(ki) ĉ†ki,σ ĉki,σ =

∑
i,σ
ε(ki) n̂ki,σ . (2.21)

This result emphasizes the importance of the reciprocal lattice, since the wave vector ki
(corresponding to a particular Bloch electron) is a conserved quantity and periodic due to
the translation by any reciprocal lattice vector. Often, however, we are more interested in
building a basis representation in the real lattice. This is achieved by introducing so-called
Wannier functions ωσ (r− Rj ), defined as Fourier transforms of Bloch functions:

ωσ (r− Rj ) := 1√
Nel

∑
i

e−ikiRj · ψki,σ (r), (2.22)

with real lattice positions Rj , Nel being the total number of electrons and i counting all
ki-vectors from FBZ. Thus, in analogy to a Bloch state, we also define a so-called Wannier
state by

|j〉σ = |Rjσ〉,

where |j〉σ represents a spin-σ electron with (real lattice) position vector Xj . In analogy to
Eq. (2.20) we can express the same Hamiltonian in the Wannier basis by

Ĥ =
∑
i,j,σ
〈iσ |Ĥ|jσ〉 ĉ†i,σ ĉj,σ =

∑
i,j,σ

Tij ĉ†i,σ ĉj,σ (2.23)
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and identify Tij as the so-called “hopping energy” (or “hopping integral”), since the above
Hamiltonian describes the creation of an electron with spin σ at lattice site Ri and at the
same time an annihilation at Rj . This, on the other hand, can be interpreted as an “electron
hopping from site j to site i.” As common in contemporary literature, here we already
substituted Ri by i and Rj by j , respectively.

Finally, the whole formalism is applied to the basis state representation according to
second quantization formalism, which in the present work will be maintained from now on.
This means that we identify previously introduced orbitals with real lattice positions (called
“cluster sites”) for spin ↑ and ↓ electrons and count the number of electrons occupying
a certain cluster site (i. e. Wannier state). As shown, the periodic lattice potential only
affects the kinetic term which transformed into a “hopping” (term) from one cluster site to
another. In retrospect, therefore it seems reasonable to assume a non-interacting electron
gas first, since this will lead to a drastic simplification of the whole problem and will help
characterizing the kinetic term better.

2.4 Lattice Vibrations

In a more accurate description of solids the ions kinetic term [namely Term (ii) from Eq. (2.1)]
must also be taken into account which affects the ions interaction among each other
[i. e. Term (iv) gets a time-dependent component]. The “picture” of motionless ions may
be useful for some simple models (for instance solids at very low temperatures). How-
ever, in real solids lattice vibrations are responsible for a number of different effects. In
the following we want to discuss basic methods for treating lattice vibrations and intro-
duce main conclusions arising from these. Thereby we mainly follow the descriptions from
[6, p. 65-75] and [13, p. 269-290].

We have already stated that for computational reasons we consider a strict periodic
arrangement of lattice ions. In such a structure each ion can perform oscillations, whereas
the restoring forces for these vibrations are the binding forces. Although binding forces
have different physical origins which depend on the particular chemical bond, we conduct a
uniform approach and make use of the so-called harmonic approximation. This means that
solids can be described as systems of N coupled quantum-mechanical harmonic oscillators
which is crucial for a further mathematical treatment.4 Therefore we consider only linear
terms of the binding forces which is justified by the fact that ions displacements only amount
about 5% of their distance to each other. On the other hand, as a consequence, we assume
that ions are coupled only to their nearest neighbors. In a more descriptive way, which
is popular in solid state theory, one can depict such a model by particles (ions) that are
connected by springs with each other.

Mathematically, the treatment of a quantum-mechanical oscillator as well as a system
of N coupled quantum-mechanical oscillators yields quantized eigenvalues (energies) and

4Besides we assume that ions move as a whole and do not get deformed. This assumption, however,
represents another simplification of the realistic case.
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due to its analogy to a photon we can define a new quasiparticle by

Definition 2.2 (Phonon) A phonon is defined as an energy quantum ~ωi of a lattice vibration
or lattice wave with the angular frequency ωi.

Thus each phonon can be assigned to a momentum ~qi where qi represents the wave vector
of a lattice vibration. Besides, the angular frequency can be written as a function of qi and
because of a strict periodic lattice the phonon energies obey

ω(qi) = ω(qi + k), (2.24)

where k represents an arbitrary vector of the reciprocal lattice. Therefore we can restrict
the wave vectors qi only to FBZ.

Above definition as well as regarding the fact that each phonon has a momentum leads to
the conclusion that phonons can be seen as quantum-mechanical particles. Thus they obey
the law of conversation of energy and momentum which is important for interactions with
other quantum-mechanical particles (see next section). Further mathematical treatment,
namely the evaluation of the ionic Hamiltonian for the whole lattice, shows that phonons
obey Bose-Einstein statistics, i. e. they are bosons. In terms of second quantization the ionic
Hamiltonian transforms to a sum of products of bosonic fundamental operators and one can
write the (popular) Hamiltonian for a set of phonons (in Bloch state representation) by

Ĥ =
∑
qi,l

~ωl(qi)
(
b̂†qi,lb̂qi,l +

1
2

)
, (2.25)

where b̂†qi and b̂qi represent bosonic creation and annihilation operators for phonons cor-
responding to lattice sites l with wave vectors qi. It is also evident that the whole problem
transformed to a system of N uncoupled harmonic oscillators. Only the allowance of higher
(anharmonic) terms in the binding forces can be interpreted as a coupling amongst phonons
which again emphasizes the fact that the result in Eq. (2.25) emerges from a simplified model.
More usually anharmonicity (of lattice vibrations) plays a big role and is also responsible
for a lot of condensed matter properties.

Finally it shall also be mentioned that phonons have a broad energy range, and for
lattices with different atoms (different masses or binding forces) two types of phonons exist,
namely acoustic and optical phonons, which we will not treat in particular. For practical
purposes phonons are important to explain typical properties of solids such as specific heat,
elasticity, electrical resistivity and so on. More thorough treatment of phonons, such as
effects that appear in “real” lattices (with lattice disorders and so on), can be found in solid
state literature and we refer e. g. to [13] for further reading.
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2.5 Electron-Phonon Interaction

For now we have treated electronic and ionic parts from the ab intio Hamiltionian in Eq. (2.1)
completely separately, only the influence of a rigid lattice potential was discussed in Sec. 2.3
which lead to the definition of Bloch and Wannier states. In the previous section it was
shown that ions generally perform vibrations, so it is obvious that the lattice potential has
to be extended by a dynamic term. In other words, electrons and phonons are coupled with
each other, which must be considered in a mathematical treatment, and finally leads to new
physical properties of solids. In the following a summary of the mathematical derivation is
given by making use of the results gathered so far, whereby explicit treatment can be found
in [6–8].

At first we include phonons in the ions and electrons interaction term [Term (v) in Eq. (2.1)]
at which the interaction potential Vel−ion transform like

Vel−ion (̂ri − R̂k ) −→ Vel−ion (̂ri − R̂k − ûk ),

where r̂i are the electrons position vectors, R̂k the (rigid) ions position vectors and ûk the
ions displacements. Further mathematical derivation is conducted similar to Sec. 2.3 and
the obtained result in Eq. (2.21) expands to

Ĥ =
∑
i,σ
ε(ki) ĉ†ki,σ ĉki,σ −

∑
i,j,σ
〈kiσ |Vel−ion (̂ri)|kjσ〉 ĉ†kj ,σ ĉki,σ . (2.26)

The matrix element 〈kiσ |Vel−ion (̂ri)|kjσ〉 can be evaluated by following the discussion from
Sec. 2.2.3, and we finally obtain the (most general) Hamiltonian for the electron-phonon
interaction (in Bloch state representation):

Ĥ =
∑
i,σ
ε(ki) ĉ†ki,σ ĉki,σ +

∑
i,j,k,l,σ

Mki,qj+Kk (b̂qj ,l + b̂†−qj ,l) ĉ
†
ki+qj+Kk ,σ ĉki,σ , (2.27)

where Mki,qj+Kk is the matrix element of the electron-phonon interaction, qj are the phonons
wave vectors (of FBZ), Kk the reciprocal lattice vectors of FBZ, and all other letters have
the same meaning as before. This Hamiltonian, often referred to as Fröhlich model, can
be further simplified, e. g. by considering uniquely longitudinal or transversal polarized
phonons. We can skip this part and proceed by noting the main consequences arising from
this result.

The electrons wave vectors ki are no conserved quantities any more. The interaction
with phonons generally leads to a transformation

ki −→ ki + qj + Kk ,

and thus the changes of electrons momentums obey strict selection rules which is due to
the fact that phonons wave vectors (and momentums) are quantized. The laws of momentum

18



2.5. Electron-Phonon Interaction

and energy conservation are mantained during all these processes, as well. All possible
electron-phonon interactions are either elementary or can be composed out of four elemen-
tary processes.
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Figure 2.1. Four kinds of elementary electron-phonon interactions: (a) describes the phonon
emission of an electron; (b) describes the phonon absorption of an electron; (c) describes
the phonon creation due to an electron-hole recombination; and (d) describes the phonon
annihilation due to an electron-hole creation.

In Fig. 2.1 all four kinds are depicted: the phonon emission of an electron [Fig. 2.1(a)],
the phonon absorption of an electron [Fig. 2.1(b)], the phonon creation due to an electron-
hole recombination [Fig. 2.1(c)] and the phonon annihilation due to an electron-hole creation
[Fig. 2.1(d)]. For describing such processes it is handy to make use of Feynman diagrams,
a powerful tool in particle and solid state physics to describe all kinds of interactions.5

5Feynman diagrams are two-dimensional diagrams with a time and space axis. Lines represent different
kinds of (quasi)particles (and their illustrated paths) which, in case they run together at a certain point (vertex),
interact with each other. Charged particles are depicted by arrows pointing in the direction of the time axis
while their antiparticles are pointing in the opposite direction. Neutral particles as well as quasiparticles are
depicted by squiggly lines.
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As a result of these interactions, especially when several elementary processes are
superimposed, the electrons eigenstates and energies get changed and “new” effects may
occur. For instance, an electron propagating through a lattice may induce a lattice polarisa-
tion that moves together with the electron and results in an increased effective mass of the
electron. Often one can define a new quasiparticle (called polaron) to describe such a state.
Another important effect is that phonons may also transfer an effective electron-electron
interaction in the way that an electron emits a phonon which subsequently gets absorbed
by another electron and thus changes its state. This phonon-induced electron-electron in-
teraction must be distinguished carefully from the “standard” Coulomb interaction and can
be repulsive as well as attractive. Latter case is important for interpreting conventional
superconductivity (in the BCS theory) concerning the stability of Cooper pairs. Many more
effects may occur, which again is beyond the scope of our discussion.

Finally we have to take a closer look at the basis states for describing a coupled
electron-phonon system. We have concluded so far that electrons are fermions and phonons
are bosons and for both kinds of particles we have derived basis states representations
[see Eqs. (2.11) and (2.14)]. The Hamiltonian corresponding to a coupled electron-phonon
system [Eq. (2.27)] generally consists of electron as well as phonon fundamental operators,
each acting only on the subspace of the particular particle type. From elementary quantum
mechanics [see 9, p. 135-145] it is known that the Hilbert space of such a system is spanned
by the tensor product of the Hilbert subspaces of each particle type. Hence the total
Hilbert space dimension equals to the product of the subspaces dimensions. By defining
|k〉el as basis kets for an electron system and |k〉ph for a phonon system in terms of second
quantization we can write a general basis state for describing a coupled electron-phonon
system by

|k〉el−ph = |k〉el ⊗ |k〉ph = |nel
1 , nel

2 , . . . , Ns ; nph
1 , n

ph
2 , . . . , Ns〉, (2.28)

where nel
i are the occupation numbers for electrons, nph

i for phonons and Ns the number of
cluster sites.6 Thus the total Hilbert space dimension Nst,el−ph is given by

Nst,el−ph = Nst,el ·Nst,ph, (2.29)

where Nst,el and Nst,ph are the electrons and phonons Hilbert space sizes, respectively.
Therefore index k from Eq. (2.28) runs from 1 to Nst,el−ph.7

6Here we also assume that all ions (cluster sites) perform vibrations. Later in this work we will learn that
electrons and phonons sites don’t have to be identical.

7It shall be noted that above basis state ket applies to all systems that consist of two different particle types.
Previously we have considered spin ↑ and ↓ electrons separately. Therefore, a basis state ket describing such
a system has a similar form to Eq. (2.28).
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2.6. Model Hamiltonians

2.6 Model Hamiltonians

The various treatments of the ab initio Hamiltonian that we have conducted so far are very
important for understanding and analyzing main physics out of solids. In many cases they
can also be used for numerical calculations, but for making them mathematically (and nu-
merically) treatable further approximations must be applied. In return the realm of these
models gets restricted to some special materials only, and mostly it is impossible to de-
termine how realistic a certain approximation is. Strongly correlated electron systems e. g.
require an explicit treatment of electron-electron interactions that often outweigh other ef-
fects. Besides, macroscopic matter consists of more than N ∼ 1023 atoms which makes
an ab initio treatment completely impossible. For describing such systems it is therefore
necessary to resort to different models that just take account of some significant effects. An-
other advantage is that simplified models can often be treated analytically which provides
a deeper insight into the investigated system than a bare numerical calculation.

In the following we will introduce all model Hamiltonians that are used throughout our
whole calculations as well as their main properties. From now on, unless stated otherwise,
we will not mark operators by hat accents “ˆ” any more to ensure a better clarity.

2.6.1 Single-band Hubbard Model

Originally introduced independently by John Hubbard [14], Martin C. Gutzwiller and Junjiro
Kanamori, the (single-band) Hubbard model is the simplest model for describing the inter-
play of kinetic energy, Coulomb interaction and Pauli principle on a lattice. It is mostly
defined as follows:

H = −t
∑
<i,j>,σ

(
c†i,σcj,σ + h.c.

)
+ U

∑
i
ni↑ni↓, (2.30)

where t is the hopping integral, < i, j > denote nearest neighbor (n.n.) cluster sites, c†i,σ and
cj,σ are creation and annihilation operators for electrons with spin eigenvalue σ on cluster
sites i and j , U is the so called on-site Coulomb repulsion and ni↑, ni↓ are occupation
number operators for spin ↑ and ↓ electrons, respectively. Since we treat the electron
hopping between two cluster sites in both directions, “h.c.” is included meaning the electron
hopping in the complementary (opposite) direction.

As evident, the Hubbard model means a drastic simplification of the electron-electron
interaction, since Coulomb repulsion is only accounted for electrons being located on the
same lattice site (i. e. Wannier state). This means that long-range interactions between
electrons are completely neglected. Initially, in this form the Hubbard model was proposed
to explain ferromagnetism. Although it also served for the study of many other physical
phenomena, its area of application has drastically expanded till today. Amongst many others,
it is used to explain antiferromagnetism, ferrimagnetism, the metal-insulator transition and,
more recently, high-Tc superconductivity. [15]
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2.6.2 Extended Hubbard Model

Often the complete neglect of long-range Coulomb interactions is not conform with properties
of real materials. Especially for materials where the on-site Coulomb repulsion U is not
large, the long-range Coulomb forces are not screened effectively. So it is important to take
these effects into account, as well. This can be done by the extended Hubbard model where
another term, treating the nearest neighbor Coulomb repulsion, is introduced. [16]

Thus the Hamiltonian reads as

H = −t
∑
<i,j>,σ

(
c†i,σcj,σ + h.c.

)
+ U

∑
i
ni↑ni↓ + V

∑
<i,j>

(ni↑ + ni↓) · (nj↑ + nj↓), (2.31)

where V is the nearest neighbor Coulomb repulsion.
Many previous studies [see, e. g. 15] on the one-dimensional and two-dimensional ex-

tended Hubbard model showed that the V -term may have important physical effects such
as the transition from a spin-density-wave (SDW) phase to a charge-density-wave (CDW)
phase.8 Recently, as discussed in [17], there has been much effort to study the competition
between CDW and superconducting states in various materials.

In the following sections, for simplicity reasons, we relate to the on-site Coulomb repul-
sion U as Hubbard-U and the nearest neighbor Coulomb repulsion V as Hubbard-V .

2.6.3 Multi-band Hubbard Model with Phonon Interaction

For many materials (e. g. clusters with different kinds of atoms) the Hubbard models from
above cannot be used to describe main physical properties. On the one hand they only
treat electronic quantum states and furthermore only electron fluctuations from one energy
band. On the other hand they don’t take any account of phonons. For the first case many
different kinds of so called multi-band Hubbard models have been proposed until now, e. g.
treating 3dx2−y2 and 2pσ orbitals explicitly in order to describe different kinds of chemical
bonds. Likewise, for treating phonons many different models exist, of which the Holstein
model may be worth mentioning. Often, in contemporary scientific articles one can find
combinations of one of the Hubbard models from before and the Holstein model, referred to
as Hubbard-Holstein model.

Due to the high variety of these models (each adapted to its sphere of application), we
will only introduce the two models, namely for the buckling and breathing case, that we
use in our later calculations. Besides, here we only present the bare formulas, all further
descriptions and explanatory statements etc. are given in Sec. 6.1. As will be discussed at
the same place, both Hamiltonians apply for a one-dimensional chain of copper (Cu) and
oxygen (O) atoms while the oxygen atoms may perform vibrations.

8SDW and CDW describe quantum-mechanical states where electrons arrange themselves in some kind of
regular patterns, related to spin or charge distributions within a cluster.
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For the buckling case the Hamiltonian reads as:

H =
∑
i

[
εd +

∑
l
ga (f†l + fl)

]
nd
i +

∑
j
εp np

j +
∑
i
Ud ni↑ni↓+

+
∑
i,l,σ

tdp (d†i,σpl,σ + h.c.) +
∑
l
ω f†l fl, (2.32)

where i runs over all Cu sites, j over all oxygen sites and l enumerates two oxygen sites
being neighbors of one Cu site. Operators d†i,σ and pl,σ create holes in 3dx2 orbitals on
Cu and pσ orbitals on O sites with occupation number operators nd

i = d†i↑di↑ + d†i↓di↓ and
np
j = p†j↑pj↑ + p†j↓pj↓. Operators f†l ,fl are phonons creation and annihilation operators while
ga represents the coupling constant for the buckling case. The parameters εd and εp are
the on-site energies on Cu and O, while tdp is the n.n. Cu-O hopping integral, Ud is the
on-site Coulomb repulsion energy on Cu and ω is the phonon frequency.

For the breathing case the Hamiltonian reads as

H =
∑
i

{
εd +

∑
l

[
(−1)Sl gd (e†l + el)

]}
nd
i +

∑
j
εp np

j +
∑
i
Ud ni↑ni↓+

+
∑
i,l,σ

[
tdp − (−1)Sl gpd (e†l + el)

]
(d†i,σpl,σ + h.c.) +

∑
l
ω e†l el, (2.33)

where all variables have the same meaning, while gd represents the diagonal coupling
constant for the breathing case and gpd the coupling constant that modulates the change of
the hopping integral. Value Sl is needed according to a convention for the breathing case,
also discussed in Sec. 6.1.

2.7 Physical Quantities of Interest

When treating many-body systems, we mainly want to examine physical properties that
not only characterize a system, but can also be compared with measurable quantities.
We already know that a certain measuring result is based on a probability distribution.
Consequently, when repeating a measuring process N times under identical conditions, one
obtains many different results that are statistically distributed. Only for N −→ ∞ their
mean value converges towards a constant value. It is therefore obvious to define the so-
called expectation value (also called mean value) of a observable which corresponds to the
previously discussed mean value, i. e. the mean value of the results one obtains if a large
number of N measurements is conducted. If H is the observable which is measured in the
quantum-mechanical state |ψ〉, it can be shown that the expectation value is given by

〈H〉 = 〈ψ|H|ψ〉〈ψ|ψ〉 , (2.34)
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which means that if |ψ〉 is given we can predict probabilities for all possible results, and if the
expectation value is calculated we obtain a direct comparison for experimental mean values.
Therefore we are mainly interested in the calculation of expectation values of observables,
whereas in the following we will always relate to the quantum-mechanical ground state
|ψ0〉 given by

|ψ0〉 =
∑
k
ck |k〉, (2.35)

while |k〉 are the orthonormal basis state kets [i. e. the configuration basis as introduced
in Eqs. (2.14) and (2.28) for electron and electron-phonon systems, respectively] with coeffi-
cients ck .

Subsequently we want to introduce all observables needed for our later calculations
and transform them in the way that they can directly be used for numerical calculations
(according to terms of second quantization). Such a step is needed for the latter numerical
implementation of the formulas and is crucial for any programming steps, as it represents
the only way to prove the correct functionality of the algorithms. We start by stating all
quantities related to charge distributions and continue with observables derived from spin
configurations. In the end we give an overview about energy terms. In the whole discussion
we focus on giving an overview of their practical relevance in order to describe main physics
for the investigated systems.

(Local) Charge Density

The most trivial quantity to begin with is the (local) charge density, defined as follows
[see 6, p. 203]:

〈ni〉 := 〈ψ0| (n̂i↑ + n̂i↓) |ψ0〉, (2.36)

where n̂i,σ are the occupation number operators for spin ↑ and ↓ electrons, and index i
represents a certain cluster site. We can simplify above equation by expanding ground
state |ψ0〉 in terms of the basis states |k〉 as follows:

〈ni〉 =
∑
k,k ′

c∗kck ′ 〈k| (n̂i↑ + n̂i↓) |k ′〉 =
∑
k,k ′

c∗kck ′
[
ni↑(k ′) + ni↓(k ′)

]
〈k|k ′〉︸ ︷︷ ︸
δk,k′

,

while we make use of the orthonormality amongst basis states |k〉. Besides we know from
Sec. 2.2.2 that the appliance of the occupation number operators n̂i,σ yields the occupation
numbers ni,σ . Finally we obtain:

〈ni〉 :=
∑
k
|ck |2 · [ni↑(k) + ni↓(k)] . (2.37)

It is evident that above quantity, if calculated for all i, yields charge densities for each
cluster site within the system.
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Charge Correlation

The previously discussed local charge density provides a clear insight into the charge
distribution of a system. This can be changed if some charge fluctuations occur. Therefore,
we often want to examine the influence of a certain cluster site’s charge density on another
one, i. e. to which extent the change of a certain cluster site’s charge density affects the
charge density of another cluster site. It is known that these “influences” are expressed by
so-called correlation functions, and we define the charge correlation function [see, e. g. 18]
as follows:

〈ni nj〉 := 〈ψ0| (n̂i↑ + n̂i↓) · (n̂j↑ + n̂j↓) |ψ0〉. (2.38)

Now we make use of the identity operator 1 =
∑

k ′′ |k ′′〉 〈k ′′| and proceed like before:

〈ni nj〉 =
∑
k,k ′

c∗kck ′ 〈k| (n̂i↑ + n̂i↓) · 1 · (n̂j↑ + n̂j↓) |k ′〉 =

=
∑
k,k ′,k ′′

c∗kck ′ 〈k| (n̂i↑ + n̂i↓) |k ′′〉 〈k ′′| (n̂j↑ + n̂j↓) |k ′〉 =

=
∑
k,k ′,k ′′

c∗kck ′
[
ni↑(k ′′) + ni↓(k ′′)

]
·
[
nj↑(k ′) + nj↓(k ′)

]
〈k|k ′′〉︸ ︷︷ ︸
δk,k′′

〈k ′′|k ′〉︸ ︷︷ ︸
δk′′,k′

,

by which we obtain the final formula for the charge correlation:

〈ni nj〉 =
∑
k
|ck |2 · [ni↑(k) + ni↓(k)] ·

[
nj↑(k) + nj↓(k)

]
. (2.39)

Charge Structure Factor

Another way for investigating the charge distribution of a system is the calculation of the
charge structure factor. It is defined as the Fourier transform of the charge correlation
function and can be used to uniquely characterize charge alterations (such as CDW) on a
lattice. In our latter work we use a slightly different form [see, e. g. 19] defined as

N(q) := 1
Ns

∑
i,j

eiq(Ri−Rj ) [〈ni nj〉 − 〈ni〉〈nj〉] (2.40)

which is identical to

N(q) = 1
Ns

∑
i,j

eiq(Ri−Rj )
〈(
ni − 〈ni〉

)
·
(
nj − 〈nj〉

)〉
. (2.41)

In both formulas Ri and Rj are the real lattice vectors (with Ns cluster sites) while q is a
reciprocal lattice vector, and we can directly use the results from before to calculate N(q).
As it is visible from both equations, N(q) gives informations on the charge density’s deviation
from the mean value. Thus a uniform charge distribution results in N = 0 while a CDW is
visible by a cusp in the function N(q).
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Density Matrix

For many studies, one often also considers the density matrix (element) ρij , defined by

ρij :=
∑
σ
〈ψ0| c†i,σcj,σ |ψ0〉. (2.42)

It shall be noted that the above formula cannot be simplified further unless one chooses
a concrete basis state representation. In our latter calculations we used formulas and
principles discussed in Sec. 3.2.1 whereupon the numerical implementation of the density
matrix is straight-forward. Besides, the results where checked with known paper’s results
(as will be shown later).

The physical meaning of the density matrix is described in two parts: The diagonal
elements, on the one hand, describe the occupation numbers of single-particle states, i. e.
they give the probability of finding an electron on a particular cluster site (which is identical
to the charge density from before). The off-diagonal elements, on the other hand, describe
coherences between two states (cluster sites). They include the information over phase
relations between the different states and describe coherent superpositions of two states.
Thus, off-diagonal elements contain direct information about the bond strength of two cluster
sites. [20, 21]

Total Spin

We now turn to spin observables and begin with the squared total spin operator S2. Since
the study of angular momentum operators in quantum mechanics is very extensive, we adapt
known results without explanation and refer to [9, p. 585-619] for further reading.

The total spin operator is defined by

S :=

 Sx

Sy

Sz

 =

 ∑
i Sx

i∑
i S

y
i∑

i Sz
i

 , (2.43)

where index i runs over all cluster sites. According to quantum mechanics theory it is
impossible to determine all three components of S simultaneously, however S2 and one
arbitrary component (as a general rule: Sz) are compatible. From the eigenvalue equation
for S2 we obtain 〈

S2〉 = 〈ψ0| S2 |ψ0〉 = S(S + 1), (2.44)

where S is the total spin. We first evaluate S2 by

〈
S2
〉

=
〈[∑

i
Sx
i

]2

+
[∑

i
Sx
i

]2

+
[∑

i
Sx
i

]2
〉

=
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=
〈[∑

i

(
Sx
i
)2 +

∑
i 6=j

Sx
i Sx
j

]
+
[∑

i

(
Sy
i
)2 +

∑
i 6=j

Sy
i S

y
j

]
+
[∑

i

(
Sz
i
)2 +

∑
i 6=j

Sz
iSz
j

]〉
=

=
〈∑

i

[(
Sx
i
)2 +

(
Sy
i
)2 +

(
Sz
i
)2
]

+
∑
i6=j

[
Sx
i Sx
j + Sy

i S
y
j + Sz

iSz
j

]〉
=

=
〈∑

i

(
Si
)2 +

∑
i6=j

SiSj

〉

Since (Si)2 = SiSi we can combine the two terms from above and allow i and j to run
over all cluster sites independently

〈
S2
〉

=
〈∑

ijSiSj
〉
,

and finally the expectation value for the squared total spin operator is given by

〈
S2
〉

=
∑
ij
〈SiSj〉. (2.45)

By comparing the sum with our results from before it is evident that the sum is conducted
over a correlation function, namely the spin correlation function which we will treat explicitly
below.

Before doing so, some further notes about the above calculations are in order. We have
shown that the total spin of a system can be found by calculating the expectation value of
the squared total spin operator and making use of Eq. (2.44). Its value is very important for
characterizing magnetic properties for a whole system as well as the effect of an external
magnetic field etc.

Spin Correlation

The spin correlation function can be interpreted in analogy to the charge correlation func-
tion, i. e. it represents an important value for studying the correlations of different spin
configurations amongst each other. As mentioned before, it is defined [see, e. g. 18] by:

〈SiSj〉 := 〈 Sx
i Sx
j + Sy

i S
y
j + Sz

iSz
j 〉. (2.46)

For its explicit evaluation we make use of following relations [6, p. 223]:

Sx
i = 1

2(S↑ + S↓) Sy
i = 1

2i (S
↑ − S↓) Sσi = c†i,σci,−σ Sz

i = 1
2
∑
σ
zσ n̂i,σ ,
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where σ denotes the spin eigenvalues for spin ↑ and ↓, z↑ = +1 and z↓ = −1. With these
relations the spin correlation function from Eq. (2.46) transforms to

〈SiSj〉 =
〈

1
4
(
S↑i + S↓i

)(
S↑j + S↓j

)
+ 1

4i2
(
S↑i − S

↓
i
)(
S↑j − S

↓
j
)

+ Sz
iSz
j

〉
=

=
〈

1
2
(
S↑i S

↓
j + S↓i S

↑
j
)

+ Sz
iSz
j

〉
=
〈

1
2
(
c†i↑ci↓c

†
j↓cj↑ + c†i↓ci↑c

†
j↑cj↓

)
+ Sz

iSz
j

〉

and we finally obtain:

〈SiSj〉 =
1
2
〈
ψ0
∣∣c†i↑ci↓c†j↓cj↑∣∣ψ0

〉
+ 1

2
〈
ψ0
∣∣c†i↓ci↑c†j↑cj↓∣∣ψ0

〉
+
〈
ψ0
∣∣Sz
iSz
j
∣∣ψ0
〉
. (2.47)

Again, the numerical implementation of the first two terms is straight-forward according
to descriptions in Sec. 3.2.1. The z-component of the spin correlation is treated separately
because of its simple form. Besides, it is often sufficient to only study the z-component of
the spin-correlation function, especially in rotation invariant systems. Following previous
relations the z-component spin correlation function is given by

〈Sz
iSz
j 〉 = 〈ψ0| 1

2 (n̂i↑ − n̂i↓) · 1
2 (n̂j↑ − n̂j↓) |ψ0〉, (2.48)

which can be directly compared with the definition of the charge correlation function in
Eq. (2.38). The calculation is conducted in a similar way and we finally obtain:

〈Sz
iSz
j 〉 =

1
4
∑
k
|ck |2 · [ni↑(k)− ni↓(k)] ·

[
nj↑(k)− nj↓(k)

]
(2.49)

Local Magnetic Moment

Often the diagonal elements of the z-component spin correlation function (Sz
i )2 are stud-

ied explicitly and referred to as squared local magnetic moment. One may also often
find definitions for a local magnetic moment m (also referred to as local magnetization)
[see, e. g. 6, p. 203] like

m := n̂i↑ − n̂i↓. (2.50)

Both quantities can be interpreted in analogy to the local charge density, but as a spin
quantity. Namely, if two electrons occupy the same cluster site they have opposite spin
and thus the magnetic moment of the cluster site is zero. On the other hand, if there are
many cluster sites occupied by single electrons each has a magnetic moment and their
arrangement among each other is responsible for the overall magnetic properties of the
system (paramagnetic, ferromagnetic etc.).
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Spin Structure Factor

For studying particular spin configurations (such as SDW) we introduce the spin (or mag-
netic) structure factor [see, e. g. 22] in analogy to the charge structure factor from Eq. (2.40).
It is defined as the Fourier transform of the spin correlation function

S(q) := 1
Ns

∑
i,j

eiq(Ri−Rj ) 〈Si Sj〉. (2.51)

Often, only the z-component of the spin correlation function is used (as we do in Chapter 4):

S(q) := 1
Ns

∑
i,j

eiq(Ri−Rj ) 〈Sz
i Sz

j 〉. (2.52)

As mentioned above, the spin structure factor serves for describing regularities in spin
distribution within the lattice. Besides, it is used to calculate other quantities like magnetic
susceptibilities etc.

Energy-Related Quantities

Finally we want to introduce some energy quantities that are associated with the used
Hamiltonian. We already know that the ground-state energy is defined as the expectation
value of the Hamiltonian:

E0 := 〈ψ0| H |ψ0〉. (2.53)

However, as will be discussed later, the ground-state energies are derived directly from the
Lanczos diagonalization, so that above relation is not used directly. In Chapter 6 we also
calculate single energy terms from Hamiltonians in Eqs. (2.32) and (2.33), which we want to
discuss in the following.

The electrical potential is defined as follows:

Epot :=
〈
ψ0
∣∣ ∑

jεp np
j +

∑
iUd ni↑ni↓

∣∣ψ0
〉
. (2.54)

The phonon energy (e†l , el represent breathing and buckling operators) reads as:

Eph :=
〈
ψ0
∣∣ ∑

lω e
†
l el
∣∣ψ0
〉
, (2.55)

The kinetic energy is defined by

Ekin =
〈
ψ0
∣∣ ∑

i,l,σ tdp (d†i,σpl,σ + h.c.)
∣∣ψ0
〉
. (2.56)
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The electron-phonon interaction (energy) for the buckling case is defined by

Eel−ph =
〈
ψ0
∣∣ ∑

i,lga (f†l + fl) nd
i
∣∣ψ0
〉

(2.57)

and for the breathing case by

Ekin,breath =
〈
ψ0
∣∣ ∑

i,l,σ
[
−(−1)Sl gpd (e†l + el)

]
(d†i,σpl,σ + h.c.)

∣∣ψ0
〉
. (2.58)

Another quantity that is important especially for the examination of superconductors
according to BCS theory is the (pair) binding energy defined in [23]:

εb(Ne) := 2E(Ne + 1)− E(Ne)− E(Ne + 2). (2.59)

Here Ne is the number of electrons and E is the energy of the system (in our case the ground-
state energy). Often the above formula is treated as a function of holes (not electrons) which
is described by the same formula with changed sign. The pair binding energy describes
whether the paring of two electrons with opposite spin is energetically favorable or not.
According to BCS theory this mechanism is responsible for conventional superconductivity.
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Chapter 3

Numerical Methods

3.1 General Overview

After we have got to know the basic mathematical knowledge for treating many-body sys-
tems we will now deal with concrete numerical methods. It is our aim to provide a general
overview of the contemporary methods used in computer science and give a short summary
about the main principles. Thereby we mainly follow descriptions from [24–27].

Generally speaking we have two basic strategies for a numerical treatment of many-
body systems. The most obvious approach is the “brute force” numerical formulation and
evaluation of the Hamiltonian matrix, i. e. the exact (numerical) diagonalization (ED) of the
many-body Hamiltonian matrix. This means that we use a numerical representation for
quantum-mechanical basis states and formulate the Hamiltonian in this particular basis
state representation. Subsequently the Hamiltonian is diagonalized in an iterative way,
and we obtain “exact” ground states and ground-state energies. The main advantage of this
(ED) method is the high numerical accuracy, which makes it an important tool for calculating
complex problems (e. g. Hamiltonians that cannot be formulated by other methods) as well
as for cross-checking results. However, due to the enormous Hilbert space sizes (which
result in an extremely high memory and computation time demand), they are restricted to
cluster sizes with ∼ 20 atoms and may also require a lot of care for optimizing the algorithm.
The most popular ED method is the Lanczos diagonalization method that is treated later in
detail.

A fundamentally different approach is that of quantum Monte Carlo (QMC) methods for
treating many-body systems. Although many different QMC methods exist, such as varia-
tional Monte Carlo (VMC) and determinantal quantum Monte Carlo (DQMC), all techniques
are based on random (number) sampling. The starting point of any QMC simulation is to
represent quantum-mechanical physics by a statistical problem. In the next step one formu-
lates expectation values for observables (such as the Hamiltonian etc.) in terms of (mostly
3N-dimensional) integrals that are evaluated by stochastic means, known as “importance
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sampling.” The main advantage of QMC is the very efficient (and relatively easy) usage
of accessible algorithms so that they can be applied on cluster sizes up to ∼ 100 atoms.
Besides, a wide range of parameters can be studied with same methods and relatively little
(numerical) effort. However, QMC methods have disadvantages as well, as e. g. they can
only be applied on a restricted class of models or they suffer from the so-called sign problem
at low temperatures. Further details about these issues and descriptive overviews of QMC
methods are given in [24, 25].

Both approaches, ED and QMC, are faced with further difficulties when applied to real
materials. Due to the cluster size restrictions which are enormous compared to realistic
(macroscopic) matter, many effects that are present in the thermodynamic limit (=̂ approx-
imately infinite size lattices) remain unrevealed in ED and QMC treatments. Mean-field
theories, on the other hand, are defined in the thermodynamic limit, but rely on some un-
controlled approximations and thus fail to describe effects typical for strongly correlated
systems, such as nonlocal fluctuations. Therefore, in the recent past, there has been much
effort concentrated on new models and theories in order to make the treatment of bigger
cluster sizes (towards the thermodynamic limit) accessible. These new “advanced” methods,
although they have specific names, are all labelled quantum cluster methods and can be
seen as a “third” approach treating many-body systems. The basic principle of all these
methods is to consider finite clusters embedded in an infinite lattice. Once the finite clusters
are evaluated by specific solvers (e. g. ED or QMC) they are “added” to the infinite lattice
in the way that their overall field contributes to the surrounding lattice as a whole. By do-
ing this the full effects of strong correlations are retained, although the interaction of little
clusters with the environment is treated on a mean-field basis. Without going into further
details, some popular methods are named in the sequel: variational cluster approximation
(VCA), (variational) cluster perturbation theory [(V)CPT], dynamical cluster approximation
(DCA), etc. Further description can be found in [26, 27].

In the following we will give an explicit description for the usage of an ED method,
namely the Lanczos diagonalization method. We begin by introducing numerical basis
states and matrix representations which are used throughout our latter calculations. Here
it is important to state that these representations can be chosen rather arbitrarily according
to the theory from Chapter 2, but they must be consequently maintained during the whole
calculation process. Following that we describe the most important principles of the Lanczos
diagonalization method, and in the end some final remarks about the implementation in
FORTRAN 90/95 are given.

3.2 Numeric Basis Representation

It is now important to have a detailed look on the numeric creation of basis states. In the
following we will only treat the methods used in this work which proved to be very useful.
Before going into detail, we first have to reflect about some general principles.

Basically (as will be shown in Chapters 5 and 6) we investigate composite particle sys-
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tems, i. e. systems with different kinds of particles. In our present work these are compound
electron systems of spin ↑ and ↓ or interacting systems of electrons and phonons. From
Sec. 2.5 we already know that this kind of systems is described by combined basis states
and the total basis state number corresponds to the product of single-basis state numbers.
From the numerical point of view it is therefore very useful to treat the creation of basis
states for each subsystem separately since it keeps the total computer memory very small.
For this reason we can treat the case for bosons and fermions again separately whereas
we only have two different kinds of particles, namely phonons as representatives of bosons
and electrons (belonging to fermions).

Before beginning with any numerical calculation it is also important to give thoughts to
the total basis states numbers. Since a small change of particular parameters (e. g. number
of cluster sites or electrons) may rapidly slow down the whole calculation process, it is
useful to determine the theoretical size of the Hilbert space analytically. Depending on the
model Hamiltonian in use this can always be done a priori and provides a good insight into
the complexity of all calculations.

In Tab. 3.1 we listed some examples for Hilbert space dimensions to depict the great
dependency on slight changes of some parameters.

Table 3.1. Number of total basis states dependent on
various parameters:a
Ns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of cluster sites
N↑,N↓ . . . . . . . . . . . . . . . . . . . numbers of spin ↑, ↓ electrons
Nph . . . . . . . . . . . number of maximum phonons in system .

Ns N↑ = N↓ Nph Tolal basis state number
4 2 5 4, 536

15 139, 536

30 1, 699, 536

6 3 5 184, 800

15 21, 705, 600

30 779, 116, 800

8 3 5 4, 036, 032

15 1, 537, 624, 704

30 153, 361, 350, 912
a Values calculated according to formulas presented in Secs.

3.2.1 and 3.2.2.

For simplicity reasons we will introduce the numerical basis state representation for
electrons first and then proceed with the phonons part.

33



Chapter 3. Numerical Methods

3.2.1 Electron Basis

As already mentioned several times before we consider electrons with spin ↑ and ↓ sep-
arately. In this notation each lattice site of an arbitrary cluster may be occupied by one
electron (with given spin) or none. To illustrate this fact we choose a random four-site cluster
like depicted in Fig. 3.1 and construct the appropriate kets in terms of second quantization.

0 1 2 3

Figure 3.1. Four-site cluster with a particular electron distribution. Blue arrows mark
electrons with spin ↑ and red arrows electrons with spin ↓. The cluster sites are numbered
from 0 to 3.

We can write the kets describing this particular electron distribution for spin ↑ and ↓ by

|ψ〉↑ = |0, 1, 0, 1〉↑

|ψ〉↓ = |1, 1, 0, 0〉↓

where we begin the counting from right to left (therefore in both kets site 0 is represented
by the rightmost position). Since the only possible values within these kets are sequences
of zeros and ones, we can identify these as sequences of (computer) bits which are used
to represent integer numbers in the so-called binary numeral system. Thus we are able to
map the states to individual integer numbers:

|ψ〉↑ = |0, 1, 0, 1〉↑ −→ |
binary code︷︸︸︷

0101 〉↑ −→ | 5 〉↑
|ψ〉↓ = |1, 1, 0, 0〉↓ −→ | 1100︸︷︷︸

binary code

〉↓ −→ |12〉↓.

By convention in computing the rightmost position is called least significant bit (LSB) and
marks the beginning of any bit sequence. Therefore the numbering in the above kets is
chosen from right to left. The integer numbers I that can be represented in this way read
as

I = 0, 1, 2, . . . , 2N − 1

where N corresponds to the available digits of the binary code and therefore is equivalent
to the number of cluster sites Ns. However, not all integers in this range represent realistic
quantum-mechanical states. Namely, we have only a particular amount of bits with value
1 (in both kets) which are determined by the quantity of spin ↑ and ↓ electrons. Therefore
the computer algorithm for creating basis states is realized by counting integers from 0 to
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2N−1 and checking if the corresponding amount of bits with value 1 is equal to the number
of electrons. This implementation can be realized with the so-called modulo function (also
popular in modular arithmetic) which is very efficient. In this way we obtain all possible
pattern combinations of zeros and ones which finally serve as basis states for electrons.

The number of basis states can be calculated by applying basic knowledge from com-
binatorics. Seen from this angle we treat a set of N cluster sites (elements) that can be
divided into two groups (subsets), namely cluster sites with value 0 and value 1. The number
of basis states is equal to the number of all possible arrangements (permutations) of zeros
and ones within. It follows from this simple derivation that this number is given by the
binomial coefficient [see 28, p. 31-34]. If N↑st represents the number of basis states for spin
↑, then we can write

N↑st =
(
Ns
N↑

)
where Ns is the number of cluster sites and N↑ the number of spin ↑ electrons. By analogy
we obtain the same expression for spin ↓ basis states and thus we are able to write the
total number of electron basis states Nst,el by

Nst,el = N↑st ·N
↓
st =

(
Ns
N↑

)
·
(
Ns
N↓

)
(3.1)

where N↓ represents the number of spin ↓ electrons and N↓st their number of basis states.
Finally we have to focus on the appliance of creation and annihilation operators in this

particular basis notation. For this purpose we take a more detailed look at the binary
numeral system. Integers in this numeral system are expressed by

I =
Ns∑
i=0

ni · 2i with ni ∈ {0, 1} (3.2)

and Ns again marks the number of cluster sites and available digits, respectively. From
Sec. 2.2.2 it is already known that the action of a creation or annihilation operator means
a change of the occupation number ni and consequently a change of the coefficient ni in
Eq. (3.2). It is now evident that this represents an increase or a decrease of integer I by the
i-th power of 2. Hence we can express numeric creation and annihilation operators by

c†i |I〉 = |I + 2i〉

ci |I〉 = |I − 2i〉,

but, additionally, we have to consider the following two conditions when performing an
explicit numerical implementation:
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(1) Following Pauli’s exclusion principle, the creation operator c†i can only be applied if
cluster site i is unoccupied. The annihilation operator ci, on the other hand, can only
be applied on an occupied cluster site since the appliance on an empty one yields
zero.

(2) We have to take into account the antisymmetry of fermionic wave functions, which
means that a sign change occurs if two electrons change their order.

In a numerical implementation, condition (1) is realized by making use of modulo function
and checking if a particular cluster site is occupied or not. After doing this the creation or
annihilation process can be performed.

Condition (2), however, is crucial if any products of creation and annihilation operators
are regarded (e. g. “electron hopping”). In such a case the electrons can change their order
amongst each other which means a sign change of the fermionic wave function. This fact
requires some additional programming since one has to compare the resulting quantum-
mechanical state with the initial one, but the implementation itself is straight-forward and
follows from our previous discussion.

3.2.2 Phonon Basis

Compared with the electrons case the numerical creation of phonon basis states is not so
obvious. We already know that phonons or, more generally speaking, bosons obey Bose-
Einstein statistics which means that their theoretical Hilbert space is infinite. Further on
this implies that any system may have an arbitrary amount of phonons (up to infinity) and
thus any cluster site may be occupied by an arbitrary number of phonons (up to infinity).
This fact necessitates some a priori simplifications in order to make the phonons numerically
treatable.

In the underlying work we adapt a truncation method for the phononic Hilbert space
discussed in [29]. The basic idea behind this method is to suppose a maximum number of
phonons Nph in the whole system with all possible distributions (and permutations) on all
cluster sites. In therms of a general basis state (see Sec. 2.2.2)

|k〉ph =
N∏
i=1

(
b†i
)nki

√
ni!
|0〉ph

we can define the above mentioned truncation method by:

N∑
i=1

nki ≤ Nph. (3.3)

Subsequently we are able to obtain the total number of phononic basis states (following
this truncation method):

Nst,ph =
(
Ns +Nph
Ns

)
(3.4)
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where Ns again represents the number of available cluster sites. Here we adapted Eq. (3.4)
from [29] (see, however, Appendix A.1 for an explicit derivation done by the author).

This means that the given system can have any amount of phonons reaching from 0 to
Nph. In order to create a full set of basis states we have to consider all possible phonon
distributions within. As a consequence we use vectors (integer arrays) to represent phononic
basis states where each dimension corresponds to a cluster site containing phonons. Thus
an arbitrary phononic basis ket reads as

|k〉ph = |n1, n2, . . . , nNs〉ph −→ (n1, n2, . . . , nNs )k,ph

and we must create a Nst,ph×Ns matrix in order to describe a full basis. The author tested
several methods for creating such basis sets that can be summarized by the following:

(1) In the case one assumes less then ten phonons in a given many-body system it is
possible to map the basis states to integer numbers following decimal numeral system.
For ten and more phonons, however, this representation is not unique.

(2) There are several alternative ways of forming all possible combinations of phonon
numbers and choosing just those states where the total phonon number is less than
or equal to Nph. For bigger cluster sites (more than 6 sites) these algorithms become
very slow.

(3) The most efficient method, also used in the present work, proved to be a recursive
algorithm written by the author in FORTRAN 90/95 (see Appendix A.2 for a detailed
description). The biggest advantage of this method is that the number of iteration
steps is equal to the total basis state number [as stated in Eq. (3.4)].

Concerning creation and annihilation operators in the phonon basis, they read exactly as
shown in Sec. 2.2.2, but according to the truncation method in Eq. (3.3) we have to introduce
two restrictions for the bosonic creation operator:

b†i | . . . , ni = Nph, . . .〉 := 0

b†i | . . . , ni < Nph, . . .〉 := 0 if
∑Ns

i=1 ni = Nph.

3.3 Numeric Matrix Representation

In the above basis state representations (for electrons and phonons) the Hamiltonian ma-
trices from Sec. 2.6 are sparce matrices with very big dimensions where only a fractional
amount of matrix elements is non-zero. It is therefore obvious to use a different matrix rep-
resentation where we only store non-zero matrix elements. This is achieved by the compact
storage principle in the way that we store diagonal matrix elements and off-diagonal matrix
elements separately.
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The diagonal matrix elements, on the one hand, are saved in a vector whose dimension
is equal to the Hilbert space dimension. It shall be noted that diagonal elements describe
potential terms, since they leave the quantum-mechanical states unchanged.

Off-diagonal matrix elements, on the other hand, correspond to fundamental operators
and thus they change quantum-mechanical states. In the compact storage we only store the
values of the off-diagonal matrix elements in connection with their column and row numbers.
With this drastic simplification we save an enormous amount of computer memory. However,
the memory can be reduced much more if we apply basic thinking from before. Namely,
we have learned that we treat different kinds of particles (spin ↑, ↓ electrons and phonons),
and thus each particle type is represented in its own basis. Since a particular fundamental
operator (=̂ off-diagonal element) acts only on the Hilbert subspace corresponding to a
particular particle we can build matrices for each particle type separately and use the
compact storage for all of them.

Although these principles are derived from trivial considerations, their numerical imple-
mentation is not so trivial and may cost a lot of time. Especially for programming a “simple”
matrix-vector multiplication one must be very careful. However, they are absolutely neces-
sary when treating big Hilbert space dimensions because otherwise the computer memory
can be exceeded very easily which means a drastic slowdown or even a breakdown of the
calculation process.

3.4 Lanczos Method

The Lanczos algorithm, originally introduced by Cornelius Lanczos [30] is an iterative method
for finding eigenvectors and eigenvalues of a square matrix as well as an approximative
method for solving linear equation systems. Together with the power method, CG method
and others it is part of the so called Krylov subspace methods and it is very useful for big
and sparse matrices. In common literature exist quite different approaches for the evolution
of the Lanczos algorithm, and also Lanczos’s initial algorithm has been drastically developed
and improved in the last decades. In this section we will describe the basic ideas together
with certain disadvantages that arise in numerical applications. The exact mathematical
derivations and proofs will be omitted, but, if necessary, we will give exact reference for
further reading. The following lines are mainly adapted from [31], but for consistency purpose
we will use a slightly different notation and form.

We start with the standard eigenvalue problem

Hxi = εixi, (3.5)

where H denotes the Hamiltonian matrix with its eigenvectors xi and eigenvalues (energies)
εi. Further on it is known that the Hamiltonian matrix is a real symmetric matrix and
for simplicity reasons, here we will treat the symmetric Lanczos method which can only
be applied on symmetric matrices. However, it is easy to show that the same formalism
can be expanded also for non-symmetric matrices. For the beginning we introduce the
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transformation matrices B and B∗ that satisfy the biorthogonality property

BB∗ = 1. (3.6)

Now we can transform Eq. (3.5) by multiplying with B∗ and using the above relation

B∗ · H · (
1︷︸︸︷
BB∗) · xi = εi · B∗ · xi.

With the definitions

T := B∗HB and x̃i := B∗xi (3.7)

we develop a transformed eigenvalue problem, but with the same eigenvalues εi from
Eq. (3.5):

T x̃i = εix̃i (3.8)

Furthermore we need the definition of the Krylov subspace.

Definition 3.1 Take a matrix H ∈ Rn×n and a vector x ∈ Rn. The subspace defined by

Kk (H, x) = span{x, Hx, . . . , Hk−1x}

is the k-order Krylov subspace of A in respect to x.

The main idea behind the Lanczos algorithm is to transform the eigenvalue problem from
Eq. (3.5) to Eq. (3.8) and solve the latter one which can be done with much higher effi-
ciency. The actual Lanczos iteration describes a way of building an orthonormal basis of
the Krylov subspace which is crucial for forming the eigenvalue problem in Eq. (3.8). It can
be proved that the columns of the matrices B and B∗ are represented by Krylov subspace
basis vectors bi and b∗i , respectively. Furthermore it follows that matrix T is tridiagonal, so
alltogether we can write:

B = (b0, b1, . . . , bk−1) , B∗ = (b∗0, b∗1, . . . , b∗k−1) (3.9)

and

T = B∗HB =


α1 β1 0
β1 α2

. . .
. . . . . . βn−1

0 βn−1 αn

 . (3.10)
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After generating and diagonalizing the tridiagonal matrix T (e. g. by QR or bisection method),
which is done very efficiently, we use the results to find the eigenvectors of the initial
matrix H .

In order to understand these principles more detailed we will derive the actual algorithm.
For this purpose we multiply Eq. (3.10) with B and perform a columnwise calculation

B · B∗︸ ︷︷ ︸
1

HB = B · T

which gives us:

Hb0 = α0b0 + β0b1

Hb1 = β0b0 + α1b1 + β1b2

...
...

Hbn = βn−1bn−1 + αnbn + βnbn+1.

Now we are able to formulate Lanczos’s three-step recursion formula

βibi+1 = (H − αi1)bi − βi−1bi−1 (3.11)

with bi called the Lanczos vectors. For this recursion formula we note the following

Theorem 3.1 Let H ∈ Rn×n be hermitian and b0 an arbitrary vector with |b0| = 1. If we
define

β0 = 0 αi = b∗iHbi βi = |bi+1|,

then the vectors bi in Eq. (3.11) form a basis of Kk (H, b), only if all βi 6= 0 for i = 1, . . . , n−1.

The explicit mathematical proof for this theorem as well as proofs for all statements written
before can be found in [32, p. 259-268].

So far we have treated the Lanczos algorithm strictly analytically. However, the process
of building the matrix T [as shown in Eq. (3.11)] is iterative, which means that the actual
dimension n of the matrix T in Eq. (3.10) depends on the number of iteration steps (n). After
every Lanczos step we get a new matrix Tn ∈ Rn×n whose eigenvalues (with increasing n)
become better approximations for the eigenvalues of the initial matrix H . Before describing
the computational implementation (Sec. 3.4.2) in detail, we first have to discuss some side
effects that occur with the Lanczos method.

3.4.1 Calculation in Finite Precision

Whenever approaching numerical calculations we have to consider the finite preciseness of
every computer. This fact makes us aware of some new aspects when treating the Lanczos
algorithm numerically.
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Terminating process

In practical use we terminate the process of calculating the Lanczos vectors when a certain
convergence is reached. The easiest way for doing this is to observe the convergence of the
βi-values after every Lanczos step. For the case that after a certain amount of Lanczos steps
βi ≡ 0, an invariant Krylov subspace is reached and the whole eigenvalue problem can be
solved uniquely. However, this method is not practical in finite preciseness calculations
because we have no knowledge about the exact preciseness of the calculated eigenvalues
which is actually more relevant. Another problem is that the case βi ≡ 0 can hardly be
reached (due to rounding errors which occur in every numerical calculation). So far better
methods exist like e. g. making use of the Schur decomposition. Further descriptions on this
issue can be found in [33, p. 473-478].

In our calculations we use a simple but effective method: As will be discussed in the
following, we are mainly interested in calculating the ground-state energy ε0 (i. e. the
smallest eigenvalue) of the Hamiltonian matrix H . We therefore observe the convergence of
this value directly.

Rounding errors

The rounding errors of the Lanczos vectors lead to a loss of orthogonality amongst each other.
In such a case so-called ghost eigenvalues may occur when diagonalizing the tridiagonal
matrix T . We already know that after every Lanczos step each eigenvalue of the matrix
T becomes a better approximation for every eigenvalue of the original matrix H . However,
if many Lanczos steps are performed, multiple eigenvalues of the tridiagonal matrix may
approximate the same eigenvalue of matrix H , which is the reason why they are called
ghosts. This effect is very annoying if one wants to determine all eigenvalues of H with a
negligible rounding error but makes no difference if one is just interested in the smallest
and highest eigenvalue. The reason for this is the fact that after a huge number of Lanczos
steps all ghosts either approximate the smallest or the biggest eigenvalue of H . For treating
this kind of problems many solutions have been proposed in the past, whereas the implicitly
restarted Lanczos method [34] may be worth mentioning.

As a general rule, for the smallest eigenvalues very good convergence is achieved already
after a few Lanczos steps, even before any ghosts occur. Therefore, the loss of orthogonality
represents no real restriction, and we obtain very good results if we concentrate on the
ground-state and the first-excited-state energies only.

3.4.2 Computational Implementation

We now want to take a closer look at the computational implementation of the Lanczos
method and the way in which we conduct the complete diagonalization of matrix H . We
can describe the whole implementation in four steps:

(1) At first we perform the Lanczos interation several times, but with a somewhat changed
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algorithm. This is because of the fact, that the three-step recursion formula from
Eq. (3.11) can be implemented in a numerical calculation just by storing two vectors
which is very important for reducing the memory (see next section). Therefore, in
our work we use the exact arithmetic implementation proposed in [33, p. 480] with a
slightly different realization.

(2) After doing this the tridiagonal matrix is diagonalized using algorithms from the Lin-
ear Algebra PACKage (LAPACK), and the convergence of the ground-state energy is
checked.

(3) If needed (1) and (2) are repeated as long as the ground-state energy reaches an
accuracy of 10−14.

(4) Once the ground-state energy is calculated we use a combined CG method with
inverse iteration to obtain the ground-state eigenvector. This kind of combined method
very well applies for largest and smallest eigenvalues corresponding to big sparse
symmetric matrices. The explicit realization would go too far to be discussed here, so
we refer to the original work presented in [35]. The ground-state eigenvector, unless
otherwise stated, is calculated with an accuracy of 10−9.

3.5 Remarks about Fortran

In this section we want to summarize some important aspects of numerical calculations that
we encountered during our calculations. Subsequently we give an overview in chronological
order, the task we have to do when programming a new program/subroutine.

Before starting any coding it proved to be useful to build up a framework and give
thoughts to the overall number and properties of required variables. Apart from the fact
that it can be helpful for other persons who study the same code, it becomes absolutely
necessary when conducting very extensive and complex calculations. One important issue
in this matter is the discussion about memory requirements. We explain this by an example:
In Chapter 6 e. g. we conduct calculations with Hilbert space dimensions up to more than
30 millions. In the Lanczos iteration we have to save altogether four Lanczos vectors with
this size (two from the iteration step, one temporary and one static initial vector). On the
other hand, the diagonal term of the Hamiltonian matrix has the same size and we end up
with five vectors with the same memory requirements (for simplicity reasons we neglect all
other variables). Since we use “double precision” (=̂ 8 bytes memory for one number) we
can estimate the total memory demand as follows:

MEMORY ≈ 30, 000, 000× 5× 8 bytes = 1, 2 · 109 bytes ≈ 1 GB.

This means, we need around 1 GB available working memory just for the above variables
and one has to be very careful to keep the number of declared variables as small as possible.
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3.5. Remarks about Fortran

Another point is the “connection” with subroutines. One may get a stack overflow9 if too
many variables are handed over to a subroutine and vice versa. This affects mostly recursive
subroutines, which is the reason why many textbooks suggest a strict iterative10 program-
ming. We also encountered memory problems when using modules which will be avoided
if all variables are distributed smartly within multiple modules. So it is suggested to make
a clever use of static and dynamic variable declaration which can be done efficiently with
the use of parameters. We also strongly suggest to use “implicit none” in every program
unit. Although the effort seems high, it is very helpful for eventual failure searches.

Probably the most important point in FORTRAN 90/95 is the fact that elements are
saved columnwise into multidimensional arrays (like matrices). This is very important when
writing routines that involve matrix multiplications etc. By taking care of this fact one can
optimize the algorithms up to 80% and more.

When exporting data to external files it is suggested to export (unformated) binary files
because this is the fastest way. In our work we used binary files for the communication
between FORTRAN 90/95 and MATLAB to create data plots. Our method is well described
in Appendix A.3.

Concluding, one also has to be very careful when using different compilers. On the one
hand, the numerical results may vary in the last few digits (due to their internal architec-
tures). On the other hand, some compilers demand a more “strict language” than others.
When treating very complex algorithms one may also make use of MPI (message passing
interface) for multi-core programming and/or turn to newer (object-oriented) versions of For-
tran (such as Fortran 2003). However, for our calculations this was not necessary, and even
the longest set of calculations took less than 24h (distributed on four nodes).

9Stack memory is the temporary memory used for the communication between program units.
10Theory states that any recursive program can be realized iteratively, often however, with an enormous

increase of complexity.
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Chapter 4

Introductory 1D Problems

At first the one-band Hubbard model [Eq. (2.30) from Sec. 2.6.1] was studied on 1D six- and
eight-site clusters with periodic boundary conditions. Although not of particular physical
interest, these initial calculations proved very useful for the latter work. On the one hand
they helped to make familiar with the numerical methods and to develop an efficient “work
routine.” On the other hand they revealed some problems with the used algorithm which
had to be considered from then on. Here we only present the results for the eight-site
cluster and summarize the most important facts.

We calculated spin and charge correlation functions as well as spin and charge structure
factors for Hubbard-U varying from 0 to 16 in units of the hopping integral t. The eight-
site cluster was examined at half-filling (i. e. where the number of electrons is equal to the
number of cluster sites) with equal number of spin ↑ and ↓ electrons, and all subsequent
discussions relate to the quantum-mechanical ground state of the system.

The spin correlation functions < Sz
i Sz

j > and charge correlation functions < ninj > in
dependency on different Hubbard-U values are plotted in Figs. 4.1 and 4.2, respectively,
and depict correlations between cluster site 0 and all other cluster sites. Similarly, the
spin structure factor S(q) and charge structure factor N(q) are shown in Figs. 4.3 and 4.4.
Finally, both quantities are compared for q = π in Fig. 4.5.

It was observed that an increase of the Hubbard on-site energy U leads to a staggered
spin correlation function with alternating sign (as can be seen in Fig. 4.1) which converges
very fast for U > 6. Physically, this fact corresponds to a strong antiferromagnetic state
with long-range order and can be compared directly with results from [22].

Similar convergent behavior is also visible from the charge correlation function depicted
in Fig. 4.2 leading to a uniform distribution of electrons within the eight-site cluster when
U is increased. Both, spin and charge correlation functions, show a periodic behavior due
to periodic boundary conditions. However, the strict periodicity is not maintained for U = 0,
which can be explained by the fact that for U = 0 various electron distributions exist which
all correspond to the ground state. In such a case the ground-state wave function is heavily
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Chapter 4. Introductory 1D Problems

dependent on the initial vector in the Lanczos diagonalization, which could also be proved
by our calculations.

The spin and charge structure factors in Figs. 4.3 and 4.4 confirm our discussion so far,
since the peak for q = π in Fig. 4.3 means an oscillating spin correlation (antiferromagnetic)
related to the real lattice. On the other hand, the function’s behavior in Fig. 4.4 represents
a decrease of all charge fluctuations and thus corresponds to a uniform electron distribution
within the cluster.

Finally, in Fig. 4.5, both are plotted in dependency on U for q = π, where it is visible
that for increasing U both converge towards fixed values.
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Figure 4.1. Spin correlation functions between cluster site 0 and i for different Hubbard-U
(in units of t) on a one-dimensional eight-site cluster.
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Figure 4.2. Charge correlation functions between cluster site 0 and i for different Hubbard-U
(in units of t) on a one-dimensional eight-site cluster.
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Chapter 5

Magnetic Properties of Individual Carbon Clusters

5.1 Introduction

The interest in carbon nanostructures nowadays expands over most science areas and is still
growing. Due to the fact that Carbon forms many different crystal structures with different
coordination numbers ranging from two to four (with different bond angles) and thus forming
materials with different physical properties, many questions are still unanswered. One, for
example, is the discussion about three-dimensional carbon clusters with N ∼ 10 atoms
concerning the formation of stable and metastable states. [1]

Recently, experimental reports on magnetic carbon opened up a whole new sphere of
interest, questioning the existence of “new” magnetic materials made of light elements (such
as carbon). On the other hand, many new theoretical studies were started as an attempt
to give theoretical explanations for these phenomenons. In this direction, the authors of [2]
investigated all sp2 carbon species with N = 10 − 14 using many-body schemes. By per-
forming a single-band Hubbard model approach in connection with Lanczos diagonalization
method for obtaining ground-state energies and wave functions, they found that these clus-
ters could exhibit spin switching when the electron-electron interaction is increased, i. e. a
transition from singlet to triplet states.

With reference to [2] it was the aim of the present work to give these results a more
detailed review and conduct further investigations on the properties of some of these carbon
clusters.

Therefore we investigated all sp2 carbon clusters with 10 atoms and one π-electron per
atom with an extended Hubbard model approach in connection with Lanczos diagonalization
method and conducted further calculations treating the quantum-mechanical stability of our
results.
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5.2 Structures and Properties

For carbon clusters with ten atoms being connected by sp2 hybridized bonds (corresponding
to three coordinate atoms) nine different isomers exist, as discussed in [2]. In the following
we adopt the same formalism and nomenclature as in [2] and refer to Fig. 5.1 for explicit
cluster structures.

(a) (b)

Figure 5.1. Crystal structures of investigated carbon isomers: (a) shows all structure types
with ten atoms; and (b) describes the isomer “iso-d” in detail. Both graphics are adopted
as they stand from [2].

In order to prove the functionality of the used algorithms, we first checked the results
from [2], particularly those for isomer “iso-d.” In Fig. 5.2 the results for the local magnetic
moment11 S2

i , the on-site charge density ni, the bond-order density matrix element ρij and
the spin correlation function < Si Sj > are plotted which can be directly compared with
Fig. 2 from [2]. The cluster site variables i and j are substituted by A, B, C etc. corresponding
to Fig. 5.1(b).

We found that all four quantities are exactly the same, except region 1.0 < U/t < 1.5
in Fig. 5.2(a) and 5.2(b), where another discontinuity in the curve of site B (at U/t ∼ 1.2) is
missing. This fact, however, has no practical relevance and we can neglect it in our further
discussion.

In Fig. 5.3 the total spin is plotted in dependency of the Hubbard-U , where it is visible
that “iso-d” exhibits a triplet state in a particular U-region. Without going into further
details, one can summarize that all quantities exhibit an abrupt change for the U-region,
where the total spin S switches from 0 to 1.

11It shall be noted that, previously, the local magnetic moment was defined by the z-component of the spin
operator: < (Sz

i )2 >. For consistency reasons, however, we follow the somewhat different definition from [2].
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Figure 5.2. Ground-state properties of isomer “iso-d” and one π-electron per atom as a
function of the Hubbard-U (in units of the hopping integral t): (a) shows the local magnetic
moment S2

i ; (b) on-site charge density ni; (c) bond-order density matrix element ρij ; and (d)
the spin correlation function < Si Sj >. The bond names correspond to the nomenclature
in Fig. 5.1(b).
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Figure 5.3. Total spin of isomer “iso-d” as a function of the Hubbard-U (in units of the
hopping integral t). As visible, for particular U the cluster exhibits a triplet state.
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5.3 Extended Hubbard Model Approach

5.3.1 Ground-State Properties of “iso-d”

For consistency reasons, the extended Hubbard model is first studied on isomer “iso-d” with
one π-electron per atom. All quantities from Figs. 5.2 and 5.3 that are related to this crystal
type are calculated for different values of the nearest neighbor (n.n.) Coulomb interaction V
(in the following named “Hubbard-V ”).

While performing the first calculations we observed that different choices of the Lanczos
initial vector may cause different energies and eigenstates. Therefore, the author conducted
a whole series of tests related to all kinds of different starting vectors. These tests proved
that without any doubt all initial vectors chosen randomly produce the same energies and
eigenstates. The only difference that may occur relates to initial vectors that describe
uniformly distributed basis states (i. e. where all basis states have the same coefficient). In
most of the cases uniform initial vectors yield excited states and therefore seldom describe
the same states that are obtained with random ones. On the other hand, in the Lanczos
algorithm without reorthogonalization the eigenvalues related to excited states become
equal to the ones related to the ground state if a significant number of Lanczos steps is
performed. The strategy now is to calculate four eigenvalues with the Lanczos method,
namely the two lowest eigenvalues related to an arbitrary initial vector and an uniform one.
With this method, when comparing the results, one can make sure that the obtained “ground
state” indeed corresponds to the lowest eigenvalue (i. e. ground-state energy), and one can
also determine the first excited state with very high certainty. Subsequently this method is
applied to all problems.

The local magnetic moment S2
i (Fig. 5.4), the on-site charge density ni (Fig. 5.5), the

bond-order density matrix element ρij (Fig. 5.6), the spin correlation function < Si Sj >
(Fig. 5.7) and the total spin S (Fig. 5.8) are plotted for different Hubbard-U and Hubbard-V
values. Like before, the cluster site variables i and j are replaced by A, B, C etc. according
to the nomenclature in Fig. 5.1(b).

The most obvious effect for V 6= 0 is the destruction of the triplet ground state (as visible
in Fig. 5.8. Specifically, the “critical” region (1.0 < U/t < 1.5) with two discontinuities for
all quantities mentioned above disappears, and one can observe an overall decrease of the
local magnetic moment (Fig. 5.4) towards constant values. The same effect is described
in [2], however with increasing U-values, and can be interpreted as charge correlations
dominating over spin correlations. This fact is also visible in Fig. 5.5, where an increase of
Hubbard-V causes a different charge distribution within the carbon cluster, as well as in
Fig. 5.7 where an increase of V “destroys” all spin correlations.

Concerning the density-matrix elements in Fig. 5.6, the drastic decrease of ρCC′ (green
line with “square”-symbols) completely disappears with increasing V -values. In [2] it is
argued that a decrease of this quantity means an increase of the bond length that connects
the two cluster parts (C and C’) of isomer “iso-d,” and thus is responsible for the triplet
ground state. Therefore we can state that for V 6= 0 the bond length decreases, which
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represents a stronger binding of the involved atoms. This fact, on the other hand, has to
do with the “stability” of the triplet ground state, which, as we show, is not very stable for
“iso-d” (see following section).
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5.3.2 Total Spin Calculations

Since we are interested in the forming of the triplet ground state and its quantum-mechanical
stability, the scope of the following discussion is mainly focused on the total spin value S .
Besides, with the strategy from before, the ground state and the first excited state were
calculated for all sp2 carbon species with one π-electron per atom and for different U- and
V -values. It was observed that the first excited state in all cases is not a triplet state any
more, and most triplet ground states become singlet states for V 6= 0. For some species,
however, the triplet ground state is maintained also for increasing V -values. Therefore,
the most interesting subject of our discussion is the energy difference ∆E := E0 − E1
between the (triplet) ground-state energy E0 and the (singlet) first-excited-state energy E1
in dependency on U and V . This means that for e. g. a big value ∆E one must apply a
higher energy to “destroy” the triplet state by displacing the system to an excited state. A
small value of ∆E , on the other hand, means that only a small energy amount is required
for “destroying” the triplet state. This is why ∆E offers a direct insight in the stability of
the (triplet) ground state.

The first interesting result is that isomer “iso-a” exhibits a triplet ground state when
V = 0.6 with a rather high stability (as can be seen in Fig. 5.9), although no such ground
states for smaller V -values can be seen.

For “iso-d,” as previously discussed in great detail, an increase of V “destroys” the
triplet ground state (see Fig. 5.10). On the other hand, this can also be explained by the
energy difference plot. Since the energy difference in the same figure is rather small, one
can already assume that this ground state is not very stable. It should also be mentioned
that the peaks in Figs. 5.9 and 5.10 where ∆E ≡ 0, depict ghost eigenvalues as discussed
before. Although they represent failures in the calculation, the author left them unchanged
to illustrate the problems discussed before. However, they can be eliminated easily, as it
was done in all succeeding plots.

For “iso-e” (see Fig. 5.11) the triplet ground state is maintained for small V -values,
however the energy difference ∆E rapidly becomes smaller and thus the ground state is
not very stable.

For “iso-f” the behaviors are the same as for “iso-d,” therefore it was not considered
necessary to plot its results explicitly.

For “iso-g” (Fig. 5.12) we observed probably the most interesting properties. With in-
creasing V -values the triplet ground states expand over wider U-regions, and also the
energy difference ∆E becomes bigger if V is increased. Both facts may indicate a very
stable triplet ground state for this structure type.

Finally, for “iso-h” (Fig. 5.13) and “iso-i” (Fig. 5.14) the triplet ground state is also main-
tained for increasing V -values and there is only a slight decrease of the energy difference
∆E , which may also imply a rather high stability.

For isomer “iso-b” and “iso-c” no triplet ground state was found.
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5.4 Conclusions

Since we still have no real experimental comparison for previously discussed carbon clusters,
we are unable to predict and characterize their existence and real electrical and magnetic
properties, respectively. As a preliminary attempt to do so on a theoretical base, we plotted
the ground-state energies of these carbon clusters in dependency on different U-values, as
shown in Fig. 5.15.

When comparing these ground-state energy curves, one can observe immediately that
the isomers “iso-g” and “iso-h,” for which the triplet ground state is maintained for increasing
V -values, are situated in a rather high position in the subjacent diagram. This fact does
not only mean a higher ground-state energy compared to other species, but also reduces
the probability that these crystal structures may be synthesized in reality, since other
configurations are energetically more favorable. The latter argument, however, is only valid
if other contributions to the energy (such as the lattice) can be neglected or if the electrons’
contribution to the energy represents the most dominating part.

The same argumentation applies for isomer “iso-i” which has the lowest ground-state
energy of all these species for U > 1.2. Here we can conclude that the electrons’ contribu-
tions are responsible for forming a (rather stable) triplet ground state. Following previous
discussion, the synthesizing of this material may be the most probable if the electrons’ con-
tribution to the energy is most dominating or if other energy contributions are negligible.
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Figure 5.15. Ground-state energies of all sp2 carbon species in dependency on different U-
values. For a better distinction of curves belonging to different carbon species, the abscissa
was chosen logarithmic.
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Chapter 6

Electron-Phonon Interaction in a 1D CuO-Chain

6.1 Introduction

After decades of intense research and the publishing of an enormous number of scientific
articles the explicit mechanism responsible for superconductivity in high-Tc cuprates is
still unknown. Although, initially, the interest in electron-phonon interaction (EPI) was
rather high, but then it was concluded that its contribution may be too weak to explain
superconductivity alone. Still, the phonon contribution to superconductivity in competition
with strong electron correlations and anisotropy is still uncertain. However, there is now
general agreement that phonons are important for many (other) properties, and a large
number of distinctive features of high-Tc cuprates has been examined by now. Recently,
the angular resolved photoemission spectroscopy (ARPES) has been a very important tool
accompanying these discussions. ARPES represents a powerful method to gain experimental
comparisons of results. Indeed, the evidence for strong EPI as well as for many other effects
that are not discussed here were provided by ARPES. [3–5]

For a computational many-body treatment of cuprates, the simplest approximation sug-
gests considering a single CuO2 plane. The reason for this approximation is the fact that
the main physics of cuprates takes place in CuO2 planes and that the planes among each
other show relatively weak interplanar coupling. [3]

Further on, we follow the discussion from [4] and introduce another approximation by
considering a one-dimensional CuO-chain with a periodic boundary condition (see Fig. 6.1).
This simplification is justified by the fact that we limit ourselves to oxygen vibrations12 only
and thus primarily consider charge dynamics between copper and oxygen. Furthermore
we can conduct calculations with smaller finite-size effects than with a two-dimensional
model. Due to the important effects of the Coulomb interaction in cuprates [see 5] we study
a multiband Hubbard model which enables a more detailed description of charge dynamics

12The reason for this “limitation” is that the oxygen ions are much lighter than the copper ions.
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and interband effects. Such a model is well described in [3] for a two-dimensional CuO2
plane. We adapt this model to the one-dimensional case and we can further neglect the
hopping between two oxygen sites, which is regarded in the original paper. This is because
in the 2D case the oxygen orbitals have a small but essential overlap, whereas in the 1D
case they are far away from each other as visible from the graphic below.

CuCuCu
O OOO

0 7362514

Cu

Figure 6.1. One-dimensional CuO-chain with eight atoms and numbering convention of
cluster sites. The big (red) atoms denote four copper atoms (Cu) and the little (blue) atoms
denote four oxygen atoms (O). Due to the periodic boundary condition cluster site 0 and 7
are connected with each other and electronic hopping is enabled.

For the CuO-chain in Fig. 6.1 we investigated two important phonon modes [see 3, 5]:
on the one hand the axial (buckling) oxygen phonons describing a motion of oxygen atoms
perpendicular to the CuO-chain; and on the other hand the in-plane (breathing) oxygen
modes describing oxygens bond stretching and thereby changing bond lengths. Both phonon
modes (depicted in Fig. 6.2) were treated separately to investigate their different effects. The
corresponding Hamiltonians are presented in Sec. 2.6.3, whereas for the breathing case we
adopt the following convention: in the case that the bond length between a copper atom
and an oxygen atom increases, the parameter Sl in Eq. (2.33) is set to zero, but if the bond
length decreases it is set to one. With this convention we follow the one of contemporary
papers, although mathematically it represents no difference since both cases are studied
equally.

For both cases we investigated different electron fillings: half-filling, one-hole and two-
hole doping. This is mainly because in [5] it is suggested that different phonon modes show
strong interaction with doped holes which we want to examine more detailed.

CuCuCuCu

(a)

CuCuCuCu

(b)

Figure 6.2. Two important phonon modes in a one-dimensional CuO-Chain: (a) blue arrows
denote the axial (buckling) oxygen phonon modes; (b) blue arrows denote the in-plane
(breathing) oxygen phonon modes.
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6.2 Exact Numerical Solutions

Like before, we had to prove the functionality of the used algorithm related to the Hamil-
tonians from Eqs. (2.32) and (2.33) first. Since no articles exist treating the same problem
that is being discussed in the following, we had no opportunity for a direct comparison.
Therefore, the indirect proof was conducted in three steps:

(1) After implementing the routine for diagonalizing above Hamiltonian, we slightly changed
the routine to make it comparable with accessible “exact” solutions from [36].

(2) After doing this successfully, the changes were set back, and we chose a simplified
problem (i. e. where only a few of the constants and parameters were changed) that
can be treated in a “semi-analytical” way.

(3) Finally, the constants and parameters again were set back, i. e. adapted to the problem
of interest.
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Figure 6.3. Ground-state energies of a four-site cluster corresponding to the Hamilto-
nian in Eq. (6.1) for different phonon numbers and boundary conditions: (a) describes the
ground-state energy for open boundary condition in dependence on the canonical coupling
constant λ; and (b) describes the ground-state energy for periodic boundary condition in
dependence on the canonical coupling constant λ. Both energies are in units of the hopping
integral t.

For carrying out (1) we used results from [36], where a model of two, four and six vibrating
molecules coupled with one electron was solved using numerical diagonalization. Based
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on this work, we concentrated on a four-site cluster with a maximum of 40 phonons treated
with the Fröhlich Hamiltonian

H = −t
∑
<i,j>

c†i cj + gω
∑
i
c†i ci(di + d†i ) + ω

∑
i
d†i di, (6.1)

where t is the nearest-neighbor hopping integral, ci, di are electron and phonon operators, g
is a dimensionless interaction constant related to the canonical coupling constant λ = g2ω/zt
and z is a coordination lattice number with z = 2 for a one-dimensional chain. Here, the
whole formalism as well as the Hamiltonian from Eq. (6.1) are adopted from [36].

Our results in Fig. 6.3 can be compared directly with Fig. 2 from [36] and show an exact
agreement. It is also visible that convergence is reached for 25 to 30 phonons. However, it
should be noted that in this simple case the phonons couple to one electron only. Therefore,
for our succeeding calculations, we are still unable to predict the required number of phonons
for reaching convergence since we treat more complex cases with coupling to more than
four electrons at the same time.

For step (2) we used the CuO-chain from before, but reduced the problem to four atoms
altogether, one electron and one or two phonons. For such a case the Hubbard matrix was
calculated “by hand” (analytically) and diagonalized numerically with MATLAB (therefore
this method is named “semi-analytical”). Subsequently the “reduced” CuO-chain was also
implemented in the Lanczos diagonalization which meant only a slight change of param-
eters and constants. For both cases, the buckling as well as the breathing Hamiltonian,
various parameters (Hubbard-U , electron-phonon coupling constant etc.) were tested and
also showed exact agreement with the results obtained with MATLAB . For the sake of
completeness all results are listed in tabular form in Appendix A.4.

After doing this, in step (3), the CuO-chain again was expanded to eight atoms and all
parameters were set to their physical values.
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6.3 Buckling Phonons

We first investigated the effects of buckling phonons with increasing electron-phonon inter-
action. We used the Hamiltonian from Eq. (2.32) and calculated for four different cases: 5,
10, 15 and 20 phonons. We used a “standard set” of parameters proposed in various previous
works which are all listed in Tab. 6.1. For computational reasons we defined

ε := εp − εd and ε −→ εp

as the difference between oxygen and copper on-site energies which is the reason why the
copper on-site energy εd is set to zero.

In the following the CuO-chain is treated separately with three different electron-hole
fillings: half-filling (2 ↑, 2 ↓ electrons), one-hole doping (3 ↑, 2 ↓ electrons) and two-holes
doping (3 ↑, 3 ↓ electrons). For these sets we calculated ground-state energies as well as
all energy terms individually (such as kinetic energy etc.), charge densities, local magnetic
momenta and spin correlations (z-components). All results are presented separately for each
electron-hole filling.

Table 6.1. Parameters for buckling
Hamiltonian in Eq. (2.32) .

εd 0.0
εp 3.0
Ud 6.0
ω 0.2
ga 0.0− 1.0
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6.3.1 Half-filling

The following plots contain data for the half-filling case in dependence on the electron-
phonon coupling constant ga. The ground-state energies are plotted in Fig. 6.4 whereas
different contributions to the energy (energy terms) are depicted in Fig. 6.5. The charge
densities for copper and oxygen sites are plotted in Fig. 6.6 and the local magnetic momenta
in Fig. 6.7. The spin correlations for nearest neighbor (n.n.) and next nearest neighbor
copper sites are depicted in Fig. 6.8.

It is clear that with increasing phonon influence (bigger overall phonon number and
electron-phonon coupling) the ground-state energies are lowered (Fig. 6.4), however even
with 20 phonons no convergence for the ground-state energies is reached.

The increase of phonon influence also leads to an increase of the kinetic energy (as
shown in Fig. 6.5) which is evident only at stronger coupling (ga > 0.4). As expected,
with increasing phonon numbers and coupling the electron-phonon interaction and phonon
energy are also increased while the electrical potential is slightly decreased.

With increased phonon influence we observe a charge transfer from oxygen to copper
atoms, and very good convergence for charge densities seems to be reached for 20 phonons
(as visible in Fig. 6.6). As a result the local magnetic momenta on copper sites are increased
whereas they are decreased (almost suppressed) on oxygen sites (visible in Fig. 6.7).

We also observe a weak antiferromagnetic solution with long-range order which becomes
stronger with increased phonon influence (visible in Fig. 6.8).
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Figure 6.4. Ground-state energies for different buckling phonon numbers at half-filling
(2 spin ↑ and 2 spin ↓ electrons).
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Figure 6.5. Energy terms for different buckling phonon numbers at half-filling (2 spin ↑ and
2 spin ↓ electrons): (a) 5 phonons; (b) 10 phonons; (c) 15 phonons; (d) 20 phonons.
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Figure 6.6. Charge densities for different buckling phonon numbers at half-filling (2 spin ↑
and 2 spin ↓ electrons): (a) describes the charge density at the copper site (Cu); and (b)
describes the charge density at the oxygen site (Ox).
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Figure 6.7. Local magnetic momenta for different buckling phonon numbers at half-filling
(2 spin ↑ and 2 spin ↓ electrons): (a) describes the local magnetic moment at the copper
site (Cu); and (b) describes the local magnetic moment at the oxygen site (Ox).
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Figure 6.8. Spin correlations for different buckling phonon numbers at half-filling (2 spin ↑
and 2 spin ↓ electrons): (a) describes the nearest neighbor (n.n.) spin correlation between
two copper sites; and (b) describes the spin correlation between second next copper site
neighbors.

71



Chapter 6. Electron-Phonon Interaction in a 1D CuO-Chain

6.3.2 One-hole Doping

The following plots contain data for the one-hole doping case in dependence on the electron-
phonon coupling constant ga. The ground-state energies are plotted in Fig. 6.9 whereas the
different contributions to the energy (energy terms) are depicted in Fig. 6.10. The charge
densities for copper and oxygen sites are plotted in Fig. 6.11 and the local magnetic mo-
menta in Fig. 6.12. The spin correlations are not plotted in the following since no significant
results were obtained. This is due to the unequal number of spin ↑ and ↓ electrons in the
system.

The ground-state energies in Fig. 6.9 show the same behavior as in the half-filling case
and are lowered with increasing phonon influence.

Like before the kinetic energy (as shown in Fig. 6.10) is increased with a bigger number
of phonons and is linear with stronger coupling. The electron-phonon interaction and phonon
energy show the same behavior as before and are also increased. However, the electrical
potential is slightly decreased at weak coupling, but increased at stronger coupling. Apart
from the half-filling case its energy is bigger than the phonon energy.

Again, we observe a charge transfer from oxygen to copper atoms (as visible in Fig. 6.11).
Apart from before, the local magnetic moment of a copper atom is increased at weak coupling
and decreased at strong coupling (with increasing number of phonons), whereas on an
oxygen site it is decreased for all coupling regimes (visible in Fig. 6.12).
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Figure 6.9. Ground-state energies for different buckling phonon numbers at one-hole doping
(3 spin ↑ and 2 spin ↓ electrons).

72



6.3. Buckling Phonons

0 0.2 0.4 0.6 0.8 1
−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

ga

e
n
e
r
g
y

t
e
r
m
s

kinetic energy

electron−phonon interaction

electrical potential

phonon energy

(a)

0 0.2 0.4 0.6 0.8 1
−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

ga
e
n
e
r
g
y

t
e
r
m
s

kinetic energy

electron−phonon interaction

electrical potential

phonon energy

(b)

0 0.2 0.4 0.6 0.8 1
−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

ga

e
n
e
r
g
y

t
e
r
m
s

kinetic energy

electron−phonon interaction

electrical potential

phonon energy

(c)

0 0.2 0.4 0.6 0.8 1
−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

ga

e
n
e
r
g
y

t
e
r
m
s

kinetic energy

electron−phonon interaction

electrical potential

phonon energy

(d)

Figure 6.10. Energy terms for different buckling phonon numbers at one-hole doping
(3 spin ↑ and 2 spin ↓ electrons): (a) 5 phonons; (b) 10 phonons; (c) 15 phonons; (d) 20
phonons.
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Figure 6.11. Charge densities for different buckling phonon numbers at one-hole doping
(3 spin ↑ and 2 spin ↓ electrons): (a) describes the charge density at the copper site (Cu);
and (b) describes the charge density at the oxygen site (Ox).
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Figure 6.12. Local magnetic momenta for different buckling phonon numbers at one-hole
doping (3 spin ↑ and 2 spin ↓ electrons): (a) describes the local magnetic moment at the
copper site (Cu); and (b) describes the local magnetic moment at the oxygen site (Ox).
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6.3.3 Two-holes Doping

The following plots contain data for the two-holes doping case in dependence on the
electron-phonon coupling constant ga. The ground-state energies are plotted in Fig. 6.13
whereas the different contributions to the energy (energy terms) are depicted in Fig. 6.14.
The charge densities for copper and oxygen sites are plotted in Fig. 6.15 and the local
magnetic momenta in Fig. 6.16. The spin correlations for nearest neighbor (n.n.) and next
nearest neighbor copper sites are depicted in Fig. 6.17.

The ground-state energies in Fig. 6.13 show the same behavior as in the previous cases
and are lowered with increasing phonon influence.

The energy terms in Fig. 6.14 show the same behavior like in the on-hole doping case.
With increasing phonon influence the kinetic energy is increased. The electron-phonon
interaction and phonon energy are decreased and increased, respectively. The electrical
potential is slightly decreased at weak coupling, but increased at stronger coupling.

Again, we observe a charge transfer from oxygen to copper atoms (as visible in Fig. 6.15).
The local magnetic moment of a copper atom is increased at weak coupling, however not as
much as in the one-hole case, and decreased at strong coupling whereas on oxygen sites
it is decreased for all coupling regimes (visible in Fig. 6.16).

We observe the formation of a weak paramagnetic state (visible in Fig. 6.17) identifiable
by a decrease of long-range spin correlations with stronger coupling.
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Figure 6.13. Ground-state energies for different buckling phonon numbers at two-holes
doping (3 spin ↑ and 3 spin ↓ electrons).
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Figure 6.14. Energy terms for different buckling phonon numbers at two-holes doping
(3 spin ↑ and 3 spin ↓ electrons): (a) 5 phonons; (b) 10 phonons; (c) 15 phonons; (d) 20
phonons.
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Figure 6.15. Charge densities for different buckling phonon numbers at two-holes doping
(3 spin ↑ and 3 spin ↓ electrons): (a) describes the charge density at the copper site (Cu);
and (b) describes the charge density at the oxygen site (Ox).
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Figure 6.16. Local magnetic momenta for different buckling phonon numbers at two-holes
doping (3 spin ↑ and 3 spin ↓ electrons): (a) describes the local magnetic moment at the
copper site (Cu); and (b) describes the local magnetic moment at the oxygen site (Ox).
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Figure 6.17. Spin correlations for different buckling phonon numbers at two-holes doping
(3 spin ↑ and 3 spin ↓ electrons): (a) describes the nearest neighbor (n.n.) spin correlation
between two copper sites; and (b) describes the spin correlation between second next copper
site neighbors.
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6.4 Breathing Phonons

The effects of breathing phonons with increasing electron-phonon interaction were investi-
gated, whereby we only concentrated on the kinetic term. Therefore we set gd = 0 in the
used Hamiltonian from Eq. (2.33). Like we did with buckling phonons four different cases
were treated: 5, 10, 15 and 20 phonons. The same set of parameters was used, as visible in
Tab. 6.1. Like before for computational reasons we defined

ε := εp − εd and ε −→ εp

as the difference between oxygen and copper on-site energies, which is the reason why the
copper on-site energy εd is set to zero.

Like for the buckling case we calculated ground-state energies as well as all energy
terms individually (such as kinetic energy etc.), local magnetic momenta and spin correla-
tions (z-components). All results are presented separately for each electron-hole filling.

It shall be noted that the convergence in the inverse iteration for obtaining the ground-
state vector was very bad, why the accuracy had to be reduced (in some cases up to 10−3)
to obtain results within a reasonable time period.

Table 6.2. Parameters for breathing
Hamiltonian in Eq. (2.33) .

εd 0.0
εp 3.0
Ud 6.0
ω 0.2
gd 0.0
gdp 0.0− 1.0
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6.4.1 Half-filling

The following plots contain data for the half-filling case in dependence on the electron-
phonon coupling constant gdp. The ground-state energies are plotted in Fig. 6.18 whereas
different contributions to the energy (energy terms) are depicted in Fig. 6.19. The charge
densities for copper and oxygen sites are plotted in Fig. 6.20 and the local magnetic mo-
menta in Fig. 6.21. The spin correlations for nearest neighbor (n.n.) and next nearest
neighbor copper sites are depicted in Fig. 6.22.

It is visible that with increasing phonon influence the ground-state energies are lowered
like in the buckling case (as shown in Fig. 6.18). However, at weak coupling (gdp < 0.4) the
influence of phonons is not visible.

The kinetic energy, the electrical potential and the phonon energy increase with stronger
coupling and a bigger number of phonons while the electron-phonon interaction drastically
decreases (see Fig. 6.19). However no change occurs for very weak coupling (gdp < 0.2).

With increased phonon influence we observe, opposite to the buckling case, a charge
transfer from copper to oxygen (as visible in Fig. 6.20). The result is a nearly uniform electron
distribution within the whole cluster. Further, the local magnetic momenta on copper sites
are decreased whereas they are increased on oxygen sites (visible in Fig. 6.21). We also
observe a strong inconsistency for 20 phonons which cannot be interpreted.

With increased phonon influence (visible in Fig. 6.22) the antiferromagnetic state is
strongly softened towards a paramagnetic state.
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Figure 6.18. Ground-state energies for different breathing phonon numbers at half-filling
(2 spin ↑ and 2 spin ↓ electrons).
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Figure 6.19. Energy terms for different breathing phonon numbers at half-filling (2 spin ↑
and 2 spin ↓ electrons): (a) 5 phonons; (b) 10 phonons; (c) 15 phonons; (d) 20 phonons.
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Figure 6.20. Charge densities for different breathing phonon numbers at half-filling (2 spin ↑
and 2 spin ↓ electrons): (a) describes the charge density at the copper site (Cu); and (b)
describes the charge density at the oxygen site (Ox).
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Figure 6.21. Local magnetic momenta for different breathing phonon numbers at half-filling
(2 spin ↑ and 2 spin ↓ electrons): (a) describes the local magnetic moment at the copper
site (Cu); and (b) describes the local magnetic moment at the oxygen site (Ox).
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Figure 6.22. Spin correlations for different breathing phonon numbers at half-filling
(2 spin ↑ and 2 spin ↓ electrons): (a) describes the nearest neighbor (n.n.) spin correla-
tion between two copper sites; and (b) describes the spin correlation between second next
copper site neighbors.
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6.4.2 One-hole doping

The following plots contain data for the one-hole doping case in dependence on the electron-
phonon coupling constant ga. The ground-state energies are plotted in Fig. 6.23 whereas
the different contributions to the energy (energy terms) are depicted in Fig. 6.24. The
charge densities for copper and oxygen sites are plotted in Fig. 6.25 and the local magnetic
momenta in Fig. 6.26. The spin correlations for nearest neighbor (n.n.) and next nearest
neighbor copper sites are depicted in Fig. 6.27.

The ground-state energies in Fig. 6.23 show the same behavior as in the half-filling case
and are lowered with increasing phonon influence.

Like before the kinetic energy, the electrical potential and the phonon energy are in-
creased with a bigger number of phonons and also occur at weaker coupling (as shown in
Fig. 6.24). The electron-phonon interaction is reduced with increasing phonon energy.

Again, we observe a charge transfer from copper to oxygen atoms (as visible in Fig. 6.25)
and the local magnetic moment of a copper atom is decreased (with increasing number of
phonons) whereas on an oxygen sites it is slightly increased (visible in Fig. 6.26). Again,
we observe some inconsistencies that we cannot explain.

Like before, antiferromagnetc spin correlations are strongly softened towards a param-
agnetic state (visible in Fig. 6.8).
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Figure 6.23. Ground-state energies for different breathing phonon numbers at one-hole
doping (3 spin ↑ and 2 spin ↓ electrons).
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Figure 6.24. Energy terms for different breathing phonon numbers at one-hole doping
(3 spin ↑ and 2 spin ↓ electrons): (a) 5 phonons; (b) 10 phonons; (c) 15 phonons; (d) 20
phonons.
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Figure 6.25. Charge densities for different breathing phonon numbers at one-hole doping
(3 spin ↑ and 2 spin ↓ electrons): (a) describes the charge density at the copper site (Cu);
and (b) describes the charge density at the oxygen site (Ox).
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Figure 6.26. Local magnetic momenta for different breathing phonon numbers at one-hole
doping (3 spin ↑ and 2 spin ↓ electrons): (a) describes the local magnetic moment at the
copper site (Cu); and (b) describes the local magnetic moment at the oxygen site (Ox).
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Figure 6.27. Spin correlations for different breathing phonon numbers at half-filling
(3 spin ↑ and 2 spin ↓ electrons): (a) describes the nearest neighbor (n.n.) spin correla-
tion between two copper sites; and (b) describes the spin correlation between second next
copper site neighbors.
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6.4.3 Two-holes doping

The following plots contain data for the two-holes doping case in dependence on the
electron-phonon coupling constant ga. The ground-state energies are plotted in Fig. 6.28
whereas the different contributions to the energy (energy terms) are depicted in Fig. 6.29.
The charge densities for copper and oxygen sites are plotted in Fig. 6.30 and the local
magnetic momenta in Fig. 6.31. The spin correlations for nearest neighbor (n.n.) and next
nearest neighbor copper sites are depicted in Fig. 6.32.

The ground-state energies in Fig. 6.28 show the same behavior as in the previous cases
and are lowered with increasing phonon influence.

Like before the kinetic energy, the electrical potential and the phonon energy are in-
creased with a bigger number of phonons and also occurs at weaker coupling (as shown in
Fig. 6.29). The electron-phonon interaction is reduced with increasing phonon energy.

For all other quantities [Fig. (6.30)-(6.32)] we observe strong inconsistency that we cannot
explain in any way.
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Figure 6.28. Ground-state energies for different breathing phonon numbers at two-holes
doping (3 spin ↑ and 3 spin ↓ electrons).
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Figure 6.29. Energy terms for different breathing phonon numbers at two-holes doping
(3 spin ↑ and 3 spin ↓ electrons): (a) 5 phonons; (b) 10 phonons; (c) 15 phonons; (d) 20
phonons.
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Figure 6.30. Charge densities for different breathing phonon numbers at two-holes doping
(3 spin ↑ and 3 spin ↓ electrons): (a) describes the charge density at the copper site (Cu);
and (b) describes the charge density at the oxygen site (Ox).
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Figure 6.31. Local magnetic momenta for different breathing phonon numbers at two-holes
doping (3 spin ↑ and 3 spin ↓ electrons): (a) describes the local magnetic moment at the
copper site (Cu); and (b) describes the local magnetic moment at the oxygen site (Ox).
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Figure 6.32. Spin correlations for different breathing phonon numbers at two-holes doping
(3 spin ↑ and 3 spin ↓ electrons): (a) describes the nearest neighbor (n.n.) spin correlation
between two copper sites; and (b) describes the spin correlation between second next copper
site neighbors.
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6.5 Conclusions

The influence of buckling phonons leads to a charge transfer from oxygen to copper atoms
and thus to an increase and decrease of the local magnetic moment on a copper and oxygen
site, respectively. With hole doping the local magnetic momenta on copper sites get reduced
and we observe the formation of a weak paramagnetic state. By calculating the binding
energy in relation to buckling phonons influence [see Fig. 6.33(a)] we observe that pair
binding is less favored.

For breathing phonons we observe mainly opposite effects. We observe a charge transfer
from copper to oxygen for half-filling and one-hole doping as well as a transition from an
antiferromagnetic state towards a paramagnetic one. For two-holes doping we cannot
make clear statements due to strong inconsistencies. The binding energy [see Fig. 6.33(b)]
is increased at low coupling and strongly decreased at stronger coupling indicating that
breathing phonons may cause pair binding.
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Figure 6.33. Binding energies for various phonon numbers: (a) describes binding energies
corresponding to different buckling phonon numbers; and (b) describes binding energies
corresponding to different breathing phonon numbers.
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Chapter 7

Summary

In the underlying work we treated two examples of strongly correlated electron systems and
one example of a strongly correlated electron-phonon system using many-body schemes.
The study of the first part, namely the case of a simplified 1D problem, was mainly intended
to make familiar with the numerical methods used in the present work as well as to obtain
a general understanding of many-body quantum theory. The latter two examples, namely
the study of magnetic properties of individual carbon clusters and the study of a 1D CuO-
chain, represented two contemporary examples associated with recent scientific articles.
By treating these, we followed previous studies of the same subjects and conducted further
investigations by means of some novel approaches. Thereby it was our aim to make a
small contribution to the general understanding of these systems. In the following the most
important results are presented with references to the respective sections.

For the one-dimensional eight-site cluster at half-filling we mainly obtained known
results typical for the Hubbard model, such as an antiferromagnetic solution with long-
range order and a uniform charge distribution with increasing Hubbard-U . The results can
be found in Chapter 4 on p. 45 and compared directly with [22].

For the investigated individual carbon clusters with one π-electron per atom we found
that the nearest neighbor interaction V in most of the cases “destroys” ferromagnetic so-
lutions (see Sec. 5.3.2 on p. 57). However, for the isomers “iso-g”, “iso-h” and “iso-i” the
nearest neighbor interaction has no negative effect or even shows an enhancement of the
ferromagnetic state. We found that for increasing V -values the ferromagnetic state is main-
tained if the energy difference ∆E between the ground-state energy E0 (corresponding to a
triplet state) and the first-excited-state energy E1 (corresponding to a singlet state) is big
enough. This can be explained as follows: For all carbon species (except isomer “iso-g”) ∆E
is reduced if V is increased which means that the triplet ground state becomes less stable.
Therefore, only if ∆E is big enough for V = 0, the reduction of stability with increasing V
is negligible. Moreover, for isomer “iso-g” we observed that with increasing V the triplet
ground state becomes even more stable and expands over wider U-regions which implies a
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high stability of the triplet ground state. By comparing ground-state energies (see Sec. 5.4
on p. 61) we observed that isomer “iso-i” had the lowest ground-state energy indicating that
energetically its configuration may be the most favorable. This, however, only applies if
other contributions to the energy (such as lattice) are negligible compared to the electrons
contributions. Altogether we can state that the extended Hubbard model approach leads to
quite different results and interpretations compared to those in [2] which were obtained by
the (simple) Hubbard model approach.

For the one-dimensional eight-atom CuO-chain (see Chapter 6 on p. 63) we found that
buckling and breathing phonons cause opposite effects. Buckling phonons lead to a charge
transfer from oxygen to copper sites with enhancement of an antiferromagnetic state that
turns to a paramagnetic state with hole doping. With increasing phonon numbers and
electron-phonon coupling the ground-state energies are lowered, but even for 20 phonons
no convergence is reached. Only the charge distribution within the cluster converges to-
wards constant values which means that in fact only a few phonons cause the charge transfer
from oxygen to copper atoms. The further increase of the overall phonon number means no
significant change in the systems’s charge distribution. For breathing phonons we observed
a charge transfer from copper to oxygen atoms, however we obtained strong inconsistencies
for charge densities, local magnetic momenta and spin correlations which may give rea-
sons to conduct further calculations. Similar to the buckling case, with increasing phonon
numbers and electron-phonon coupling the ground-state energies are lowered and again no
convergence is reached for 20 phonons. Besides, we observed that only for stronger coupling
gdp > 0.2 breathing phonons have physical effects. Finally by comparing binding energies
we saw that buckling phonons might prevent pair binding due to a positive (pair) binding
energy. Breathing phonons, on the other hand, also exhibit a positive (pair) binding energy
at weaker coupling gdp < 0.6, but cause a massive enhancement of pair binding due to a
negative (pair) binding energy at stronger coupling. Due to the inconsistencies mentioned
above and to a somewhat larger scale of the (pair) binding energy for the breathing case
further calculations should be done before drawing reliable physical conclusions.

Finally we want to note that we also made use of [37–44], however not as direct references
but for general understanding of many-body problems etc.
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Author’s Additional Stuff

A.1 Derivation of Phononic Hilbert Space Dimension

As our starting point we take a Ns-site cluster with a maximum of Nph phonons. Since the
phononic Hilbert space Hph depends only on these two parameters, it is evident that we
can write it as a sum of Hilbert spaces belonging to fixed numbers of sites as well as fixed
numbers of phonons reaching from 0 to Nph:

Hph = H(Ns, Nph) +H(Ns, Nph − 1) + . . .+H(Ns, 0). (A.1)

We thus choose a fixed phonon number M and investigate for this particular case. Again,
the problem is of combinatorial nature, as we need to find all possible combinations for
occupation numbers, whereas their sum is equal to M .

Following [28, p. 44-45] we adapt a more descriptive way and consider all particles
(phonons) as part of a big “pot.” Hence we introduce some kind of “delimiters” dividing
this “pot” into many parts (where each part represents a cluster site). Further on we treat
“delimiters” and particles equally. Since for a Ns-site cluster we need Ns − 1 delimiters,
our whole “pot” contains now M+Ns− 1 particles of two kinds: phonons and delimiters. In
order to obtain all possible combinations for occupation numbers we only have to form all
possible distributions of delimiters within our “pot.” We know from before that this number
is given by the binomial coefficient(

Ns +M − 1
Ns − 1

)
=
(
Ns +M − 1

M

)
.

By applying this knowledge to Eq. (A.1) we get the dimension of the total Hilbert space by:

DIM (Hph) =
(
Ns +Nph − 1
Ns − 1

)
+
(
Ns +Nph − 2
Ns − 1

)
+ . . .+

(
Ns +Nph −Nph − 1

Ns − 1

)
. (A.2)
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We now use the identity for binomial coefficients(
n
k

)
=
(
n− 1
k − 1

)
+
(
n− 1
k

)
together with

(
n
n

)
= 1 =

(
n− 1
n− 1

)
and collect terms in Eq. (A.2) from right to left by

DIM (Hph) =
(
Ns +Nph − 1
Ns − 1

)
+
(
Ns +Nph − 2
Ns − 1

)
+ . . .

. . .+
(
Ns +Nph −Nph + 1

Ns − 1

)
+
(
Ns +Nph −Nph − 1

Ns − 1

)
+
(
Ns
Ns

)
︸ ︷︷ ︸(Ns+1

Ns

)︸ ︷︷ ︸(Ns+2
Ns

)
.

Since in Eq. (A.2) we have Nph + 1 terms we finally get

DIM (Hph) =
(
Ns +Nph
Ns

)
describing the total Hilbert space size.

A.2 Algorithm for Creating Phonon Basis States

As described in Sec. 3.2.2 we build a matrix where the rows describe basis states according
to second quantization formalism. A maximum number Nph of phonons is given so that the
system can have an arbitrary amount of phonons from zero up to Nph.

In the following we choose an example with Nph = 2 for four cluster sites (Ns = 4). The
matrix ST containing all basis states has the following form:

ST =



0 0 0 0
1 0 0 0
2 0 0 0
0 1 0 0
1 1 0 0
0 2 0 0
0 0 1 0
1 0 1 0
0 1 1 0
0 0 2 0
...

...
...

...
0 0 0 2



.
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With this trivial example the principle of the algorithm is already well illustrated: Begin-
ning with the first phonon site (left-most position) the program incrementally increases its
occupation number until the maximum phonon number Nph is reached. After that the occu-
pation number of the next phonon site is increased and all calculation steps that have been
conducted until now are repeated. After every step the program makes sure that the sum
of the phonons occupation numbers from all sites is less or equal to Nph. With this method
all basis states have an unique order: if an annihilation operator is applied on one of the
sites, the new state is located above the current state; in the case of a creation operator
the new state’s position is below.

The program is very efficient and creates millions of basis states in just a few seconds
on a single PC. The code is listed below in Listing A.1.

Listing A.1. FORTRAN 90/95 recursive subroutine for creating phononic basis states. The
input (IN) and output (OUT) parameters are listed below:
ns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of cluster sites (IN)
ns1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of cluster sites, needed as recursion variable (IN)
nph1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of phonons (IN)
arr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . temporary basis state, internal variable (IN/OUT)
ST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . matrix containing basis states (OUT)
NST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of basis states (OUT).

1 recursive subroutine bosons (ns , ns1 , nph1 , arr , ST, NST)
2
3 implicit none
4 integer , intent(in) :: ns , ns1 , nph1
5 integer , intent(inout), dimension (0:6000000 ,0: ns) :: ST
6 integer , intent(inout) :: NST
7 integer , dimension (0:ns) :: arr
8
9 IF (ns1 .EQ. 0) THEN

10 DO WHILE (SUM(arr) .LE. nph1)
11 ST(NST ,:) = arr
12 arr(ns1)=arr(ns1)+1
13 NST=NST+1
14 END DO
15 arr (0) = 0
16 ELSE
17 DO WHILE (arr(ns1) .LE. nph1)
18 CALL bosons(ns , ns1 -1,nph1 ,arr , ST, NST)
19 arr(ns1)=arr(ns1)+1
20 arr (0:(ns1 -1)) = 0
21 END DO
22 END IF
23
24 end subroutine bosons
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A.3 Algorithm for Loading Binary Files

When exporting an array (e. g. matrix or vector) into a binary file with FORTRAN 90/95 it
is saved into a “data block” whereas during this process two “length fields” are added, one
at the beginning and one at the end (as depicted in Fig. A.1). The length fields are integer
numbers that contain the size of the array (i. e. the amount of bits). In our programs, when
exporting an arbitrary array, we save three values: number of rows (integer), number of
columns (integer) and the particular array (e. g. double). In this way we can export any
kind of array automatically and load the array with corresponding dimensions in MATLAB
(otherwise MATLAB doesn’t know the array’s dimensions). Therefore the MATLAB routine
first loads three integers and then builds the array from the binary file. Since we mostly
save many arrays into one file, the file contains many data blocks and the same procedure
is repeated in MATLAB many times. In Listing A.2 the code for the MATLAB routine is
listed.

binary file data block

length field

length field

array data

Figure A.1. Illustration of a FORTRAN 90/95 binary file. All arrays are saved in data blocks
whose “length fields” contain the length (integer number) of the array elements.

Listing A.2. MATLAB routine for loading binary files created with FORTRAN 90/95 .
1 % program for loading fortran data files and plotting
2 % date: 05.03.2010
3 % author: goran lovric
4 % -------------------------------------------------------------------------
5
6 % -------------------------------------------------------------------------
7 % names AND types for loaded arrays
8 % -------------------------------------------------------------------------
9 names = {’A’ ’B’ ’C’ ’D’ ’E’ ’F’};

10 types = {’double ’ ’double ’ ’double ’ ’double ’ ’double ’ ’float’ ’float’};
11 n_a = 5; % number of loaded arrays
12
13 % -------------------------------------------------------------------------
14 % open and load from fortran data file
15 % -------------------------------------------------------------------------
16 fid = fopen (’fort .10’, ’r’ ); % open data file
17 for kk = 1:n_a
18 mn = fread ( fid , [ 1, 3 ], ’int’ );
19 ii = mn(2);
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20 jj = mn(3);
21 x_tmp = fread ( fid , [ii, jj], types{kk} );
22 eval ( [ names{kk} ’␣=␣x_tmp␣’] );
23 lf = fread ( fid , [ 1, 1 ], ’int’ );
24 if lf ~= mn(1) % error check
25 error ([’invalid␣record␣structure␣at␣data␣point:␣’, num2str(kk)]);
26 end
27 end
28 st = fclose( fid );
29
30 % -------------------------------------------------------------------------
31 % plotting part
32 % -------------------------------------------------------------------------
33
34 [...]

A.4 Exact Numerical Results

The numerical results of a simplified 1D CuO chain are given. The system consists of
four atoms (2×Cu and 2×O) with a periodic boundary condition and is filled with one
electron. The numerical results, obtained by semi-analytical calculations, are presented
below: the results for the “buckling Hamiltonian” [Eq. (2.32)] are listed in Tab. A.1 for one
and two phonons, whereas the results for the breathing Hamiltonian [Eq. (2.33)] are listed
in Tab. A.2.

Table A.1. Ground-state energies of a four-site clus-
ter in dependency on various parameters for one and
two buckling phonons coupled to one electron:
ωa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . phonon frequency
ga . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . coupling constant
ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ε := εp − εd
E0 . . . . . . . . . . . . . . . . . . . . . . . . . . ground-state energy .

phonons ωa ga ε E0

1 0.2 0.4 3.0 −1.3730
0.2 0.2 3.0 −1.1498
0.2 0.4 2.0 −1.3673
0.4 0.4 3.0 −1.1044
0.5 0.4 1.5 −1.6076

2 0.2 0.4 3.0 −1.6020
0.2 0.2 3.0 −1.2169
0.2 0.4 2.0 −1.7767
0.4 0.4 3.0 −1.4448
0.5 0.4 1.5 −1.6891
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Table A.2. Ground-state energies of a four-site clus-
ter in dependency on various parameters for one and
two breathing phonons coupled to one electron:
ωb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . phonon frequency
gdp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . coupling constant
ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ε := εp − εd
E0 . . . . . . . . . . . . . . . . . . . . . . . . . . . ground-state energy .

phonons ωb gdp ε E0

1 0.2 0.4 3.0 −1.0532
0.2 0.2 3.0 −1.0133
0.2 0.2 2.0 −1.2514
0.4 0.2 3.0 −1.0114
0.5 0.4 1.5 −1.4409

2 0.2 0.4 3.0 −1.0802
0.2 0.2 3.0 −1.0148
0.2 0.4 2.0 −1.3300
0.4 0.4 3.0 −1.0579
0.5 0.4 1.5 −1.4531
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A.5 Project’s Timetable

For personal reasons the author documented all working steps (day by day) which are
summarized in the following. For eventual future projects this time table may be helpful
since it can serve as a “time management reference” in order to know what amount of work
can be done in what period of time.

� January
� theory reading (many-body quantum mechanics, numerical methods,

Green’s functions, linear response theory, etc.)
I 1 week

� learning FORTRAN 90/95 I 1 week
� studying FORTRAN 90/95 code for Lanczos method I 1-2 weeks

� February
� holidays (visit to Zhengzhou) I 4 days
� studying FORTRAN 90/95 code for Lanczos method, theory (ED) I 2 weeks
� LATEX layout for master thesis, all package configurations I 1-2 weeks
� theory writing (Lanczos Method) I 3 days
� studying theory about Hubbard model, methods (papers, books) I 3 days

� March
� analytical calculations (correlation functions etc.) I 2-4 days
� MATLAB routine for opening binary files I 1-2 days
� calculation of 1D problems from Chapter 4 I 2-4 days
� concept for master thesis I 1 day
� beginning calculations for 3D clusters in Chapter 5 I 3 days
� holidays (visit to Maoping, Xian, Beijing, Tianjin, Shanghai) I 16 days

� April
� theory writing (Introduction to Many-Body Physics) I 1-2 days
� reproducing results for individual carbon clusters (Chapter 5) I 2-3 days
� calculations with extended Hubbard model, failure corrections, figures I 2 weeks
� theory reading and writing I 1 week

� May
� studying all papers about electron-phonon coupling etc. I 3-5 days
� phonon implementation and optimization I 1-2 weeks
� reproducing paper results (Exact Numerical Solutions) I 1 week
� writing theory (various chapters) I 1 week
� studying AIP style manual for figures, tables, etc. and LATEX coding I 1-2 days

� June
� buckling phonons implementation, figures I 1 week
� breathing phonons implementation, figures I 1 week
� theory writing (most parts finished) I 1-2 weeks
� holidays I 5 days

� July, September, October
� final corrections, discussion etc. I 5 weeks
� proofreading (by Dr. Renate Belaj) and correction I 1 week
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